Магазин форменной и спецодежды
КОМПРЕССОРНЫЕ МАШИНЫ
применяют гл. обр. для перемещения и сжатия газов, а также их сжижения, охлаждения и др. Перемещение газа осуществляется под действием разности давлений на двух участках потока в замкнутых каналах (трубопроводах, газоходах и т. д.) или без них. В последнем случае перемещение газов наз. вентиляцией. Необходимая разность давлений определяется требуемой скоростью газового потока и допускаемым гидравлич. сопротивлением системы, возникающим при движении газа по трубопроводу. Перепад давлений, обеспечивающий перемещение газов, достигается с помощью их сжатия, или компримирования. Конечное давление при сжатии зависит от условий теплообмена газа с окружающей средой. Согласно теории, газ может сжиматься изотермически или адиабатически. При изотермич. сжатии вся расходуемая энергия превращ. в теплоту, к-рая полностью отводится в окружающую среду. При адиабатич. сжатии теплообмен с ней отсутствует и вся выделяющаяся теплота затрачивается на возрастание внутр. энергии газа и повышение его т-ры. Действит. процесс сжатия - политропический и рассматривается как совокупность последоват. изменений равновесных состояний газа. При этом изменяется его т-ра и часть теплоты отводится в окружающую среду. Реальный процесс компримирования приближенно описывается ур-нием политропы: pVn=const, где р,V-соотв. давление газа и его уд. объем, n-параметр (показатель политропы), определяемый св-вами, кол-вом газа и его теплообменом с окружающей средой, а также работой сил трения. Показатель n обычно переменен, поэтому такой процесс принято заменять условным, к-рый эквивалентен действительному с n=const. Работа L, затрачиваемая на повышение давления газа массой 1 кг в К. м. любого типа, равна сумме работ сжатия (Lcж) и перемещения газа: L=Lcж+L выт+L вх, где L выт и L вх - работы, совершаемые соотв. после сжатия при вытеснении газа из рабочих полостей машины и при входе газа в них. В общем случае
,
а при политропич. сжатии идеального газа где V1 и V2 - уд. объем газа соотв. до и после машины, p1 -начальное давление, или давление всасывания, р 2 -конечное давление, или давление нагнетания. Т-ра газа в конце политропич. сжатия Т 2=Tl(p2/pl)(n-l)/n. Теоретически наиб. выгодно изотермич. сжатие, поскольку при этом затраты энергии К. м. на уменьшение уд. объема и перемещение газа минимальны. Однако полное изотермич. сжатие практически неосуществимо и для приближения к нему сжимаемый газ в ряде случаев охлаждают, понижая т-ру стенок рабочих полостей машины. В зависимости от величины повышения давления (отношение р 2/р 1, устар. - степень сжатия) К. м. подразделяют на вентиляторы, газодувки и компрессоры.
Вентиляторы (p2/p1<1,1) применяют в системах пром. вентиляции (см. Охрана труда), тягодутьевых (см. Градирни), пневмотранспортных (см. Пневмо- и гидротранспорт) и др. установках. В соответствии с величиной р 2 различают машины низкого (до 1 кПа), среднего (1-3 кПа) и высокого (до 15 кПа) давления. Вентиляторы м. б. одно- и многоступенчатые, одно- и двустороннего всасывания, горизонтальные и вертикальные (по положению оси рабочего органа - колеса в виде барабана либо пропеллера с про-филир. лопатками). По направлению потока газа в колесе вентиляторы бывают радиальные, осевые, диаметральные и диагональные (рис. 1). В радиальных, или центробежных, машинах газ
Рис. 1. Вентиляторы: а - радиальный: посевой; вдиаметральный; гдиагональный; l -рабочее колесо; 2 - корпус.
через направляющий аппарат всасывается вдоль оси вращения колеса в каналы между его лопатками. При вращении колеса под действием центробежной силы газ перемещается по спиральному корпусу и удаляется по направлению радиуса в выпускное отверстие, создавая на выходе избыточное давление. В осевых вентиляторах газ проходит вдоль оси, не изменяя направления; в диаметральных машинах газ пересекает колесо по диаметру; в диагональных (прямоточных) вентиляторах газ с лопаток поступает по диагонали в кольцевой кожух, из к-рого выходит в осевом направлении. наиб. распространены радиальные и осевые вентиляторы. Последние проще в изготовлении, менее металлоемки, чем центробежные машины, однако развивают меньшее давление. Их целесообразно применять в коротких газопроводящих системах для подачи больших объемов газа при малом напоре. В разветвленных сетях (напр., пром. вентиляции) обычно используют центробежные машины. Осн. показатели (давление, производительность, мощность, кпд) работы вентиляторов, как и других К. м., находят путем расчета вентиляционных либо иных систем и по спец. графикам. Нормальная эксплуатация вентиляторов определяется условиями их работы. Напр., при значит. колебаниях расхода и давления воздуха затруднительно обеспечить устойчивое функционирование вентиляц. сети с помощью одной машины, поэтому соединяют параллельно либо последовательно неск. вентиляторов. В случае необходимости существенно увеличить при постоянном давлении производительность машин применяют их параллельное соединение, для значит. повышения давления при той же производительности - последовательное.
Газодувки, или нагнетатели (1,1<р 2/р 1<3,5), создают давление от 0,015 до 0,115 МПа и используются для пневмотранспорта, при рециркуляции горячих газов в сушилках и топочных газов в печах, для предварит, сжатия воздуха или его смеси с топливом (т. наз. наддув) перед подачей в двигатели внутр. сгорания и др. К газодувкам относятся также вакуум-насосы (см. Насосы) и эксгаустеры. Последние характеризуются большой производительностью и применяются для отсасывания газов, напр. пыльного воздуха, из производств. помещений; газ всасывается при пониж. давлении, сжимается до давления, равного атмосферному либо превышающего его, и выбрасывается в атмосферу.
Компрессоры (p2/p1>3,5) применяют для перемещения по трубопроводам сжимаемых при охлаждении газов, перемешивания и распыливания жидкостей, увеличения степени превращ. исходных в-в и т. п. Эти машины подразделяют на вакуумные (начальное давление ниже атмосферного, т. е. p1<0,115 МПа), низкого (р 2=0,115-1 МПа), среднего (1-10 МПа), высокого (10-100 МПа) и сверхвысокого (св. 100 МПа) давления. Компрессоры бывают одно- и многоступенчатые, одно- и многосекционные (секция-единичная ступень либо группа ступеней, после к-рой газ отводится в холодильник или направляется потребителю). Прочностная характеристика ступени либо секции, конструктивные особенности предохранительных и др. клапанов и применяемые материалы определяются рабочим давлением, размеры ступени (напр., диаметр рабочего органа - цилиндра, колеса и т. п.) - производительностью Q, или объемом газа, перемещаемого машиной в единицу времени. Компрессорная установка кроме собственно компрессора с приводом включает межступенчатую и концевую теплообменную аппаратуру, влагомаслоотделители, трубопроводы, а также контрольно-измерит. приборы, ср-ва защиты (вибрационной, акустической и т. д.) и автоматики. По принципу сжатия различают объемные и динамич. компрессоры. В первом случае компримирование происходит вследствие периодич. уменьшения объема, занимаемого газом, во втором - в результате непрерывного ускорения потока газа с преобразованием подводимой к нему внеш. энергии последовательно в кинегич. энергию потока и в потенциальную (давление). Объемные компрессоры по виду рабочего органа делятся на поршневые, мембранные и роторные (ротационные). В поршневых компрессорах (рис. 2) газ сжимается в замкнутом пространстве (цилиндре) поршнем, совершающим возвратно-поступат. движение с помощью кривошипно-шатунного механизма. Выпускают одно- и многоцилиндровые машины, причем в зависимости от расположения цилиндров различают горизонтальные, вертикальные и угловые компрессоры. Горизонтальные машины, в к-рых цилиндры размещены по одну сторону коленчатого вала, наз. односторонними, по обе стороны-оппозитными. Последние отличаются большей частотой вращения вала (что позволяет повышать производительность), меньшими массой и габаритными размерами, чем односторонйие машины. Вертикальные компрессоры по сравнению с горизонтальными занимают меньшую площадь, а фундамент, воспринимающий вертикальные нагрузки, имеет меньшую массу. Угловые компрессоры в зависимости от расположения цилиндров по отношению к оси вала м. б. V- и W-образные, а также прямоугольные; эти машины получили значит. распространение
благодаря ряду преимуществ перед горизонтальными и вертикальными компрессорами: лучше уравновешены (поэтому требуется менее массивный фундамент), компактны и имеют меньшую массу. Поршневые компрессоры применяют для сжатия (р 2=3-300 МПа) газов низкой плотности при Q=10-300 м 3/мин; недостатки: загрязнение газов маслами, используемыми для смазки цилиндров, большие габаритные размеры, необходимость установки на массивных и дорогостоящих фундаментах, неравномерность подачи газа. В мембранных компрессорах, к-рые по типам (горизонтальные, угловые и т. п.) не отличаются от поршневых, газ компримируется в результате уменьшения объема камеры сжатия при колебаниях мембраны, вызываемых возвратно-поступат. движением гидропривода. При прогибе мембраны происходит всасывание и нагнетание газа, к-рый интенсивно охлаждается вследствие развитой пов-сти мембраны и иногда - посредством змеевика с холодной водой, что обеспечивает высокое отношение р 2/р 1 в одной ступени. Так, в трехступенчатом компрессоре создается давление 100 МПа. При перемещении мембраны достигаются герметизация рабочей полости машины и возможность получать на выходе газ высокой чистоты. Поэтому такие компрессоры используют для сжатия обычно до 10-50 МПа, напр., кислорода, хлора и фтора при Q =1-50 м 3/мин. В роторных компрессорах уменьшение объема газа осуществляется одним или неск. вращающимися роторами. По конструкции рабочих полостей эти машины подразделяются на пластинчатые, жидкостнокольцевые, винтовые и др. Пластинчатые компрессоры (рис. 3) состоят из корпуса,
Рис. 3. Пластинчатый компрессор: 1 - корпус; 2 ротор; 3 - пластина; 4 камера сжатия; 5 - охлаждающая рубашка; 6. 7 - всасывающий и нагнетательный патрубки.
внутри к-рого на горизонтальном валу вращается эксцентрично расположенный ротор с продольными пазами и вставленными в них свободно скользящими пластинами. При вращении ротора пластины под воздействием центробежной силы выталкиваются из пазов и разделяют пространство между корпусом и ротором на ряд камер. Объем последних при вращении ротора непрерывно уменьшается по направлению от всасывающего патрубка к нагнетательному, через к-рый вытесняется газ, сжатый в камерах. В компрессорах с жидкостным кольцом внутри цилиндрич. корпуса вращается эксцентрично размещенный ротор, снабженный жестко закрепленными лопатками. Корпус машины примерно наполовину заполняется жидкостью, к-рая при движении ротора отбрасывается лопатками к стенкам корпуса, образуя на его внутр. пов-сти вращающееся кольцо. В результате между ним и лопатками образуются камеры разного объема, к-рый непрерывно уменьшается, вследствие чего газ, засасываемый через отверстие в крышке корпуса, сжимается и выталкивается в нагнетат. патрубок. Рабочей жидкостью, как правило, служит вода (такие машины наз. водокольцевыми), реже масло, ртуть, серная или др. к-ты. Несмотря на то что эти компрессоры имеют более низкий кпд, чем пластинчатые, они нашли широкое применение благодаря простоте устройства, малому износу, надежности действия и возможности компримирования запыленных газов. В винтовых компрессорах (рис. 4) рабочие камеры образуются корпусом и двумя винтообразными роторами, связанными между собой парой цилиндрич. шестерен и имеющими зубья разл. профиля. При вращении ведущего ротора его зубья входят в зацепление с зубьями на ведомом роторе и вытесняют находящийся в камерах сжатый газ, перемещая
Рис. 4. Винтовой компрессор: 1 - корпус; 2, 3 - ведущий и ведомый винтовые роторы; 4 - шестерни.
его в продольном направлении. Различают машины сухого сжатия (газ охлаждают с помощью водяных рубашек, расположенных в корпусе) и маслозаполненные (для охлаждения газа в рабочие полости винтов впрыскивают масло). Достоинства винтовых компрессоров: быстроходность, компактность, чистота подаваемого газа; недостатки:
Рис. 5. Центробежный компрессор: 1 - корпус (улитка): 2 - рабочее колесо: 3 - вал; 4 - устройство для торможении потока газа и повышения давления (диффузор); 5 - направляющий аппарат; 6, 7 - всасывающий и нагнетательный патрубки.
сложность изготовления винтообразных роторов, высокий уровень шума при работе. Типичные показатели роторных машин: Q =1-100 м 3/мин, р 2=0,3-1 МПа. Динамич. компрессоры по принципу действия подразделяются на турбинные (турбокомпрессоры) и струйные. В турбокомпрессорах поток газа ускоряется в результате контакта его с лопатками вращающегося рабочего колеса. наиб. распространены радиальные и осевые машины.
Рис. 6. Осевой компрессор: 1, 2 - статор и его лопатки; 3, 4 ротор и его лопатки; 5, 6 - Направляющий и спрямляющий аппараты; 7 - диффузор; 8, 9 - всасывающий и нагнетательный патрубки.
Радиальные турбокомпрессоры, в к-рых газ движется от центра колеса к периферии, наз. центробежными (рис. 5), в обратном направлении - центростремительными. Центробежные машины, в к-рых давление создается под действием центробежных сил, возникающих во вращающемся газовом потоке, м. б. с горизонтальным (развивают избыточное давление до 7 МПа) или с вертикальным (до 35 МПа) разъемом корпуса и имеют производительность до 600 м 3/мин и выше. Для обеспечения производительности 1500 м 3/мин и более наряду с центробежными применяют осевые компрессоры (рис. 6). Осн. частями такой машины служат ротор и корпус-статор, снабженные лопатками. При вращении ротора газ перемещается вдоль оси машины, причем кинетич. энергия потока превращ. в энергию давления одновременно на лопатках ротора и статора; кроме того, статорные лопатки образуют своеобразное направляющее устройство, по каналам к-рого сжатый газовый поток через спец. спрямляющий аппарат и выходной патрубок поступает в напорный трубопровод. Осевые компрессоры имеют более высокий кпд, меньшие массу и габаритные размеры, чем машины с радиальным потоком. Осн. достоинства турбокомпрессоров: большой срок службы и высокая надежность работы; сжатие газов без загрязнения смазочными материалами; непрерывность подачи газа; малая металлоемкость; достаточно высокий кпд; возможность использования легких фундаментов вследствие небольшой вибрации. Благодаря этим достоинствам, а также высокой производительности турбокомпрессоры находят в последнее время все большее применение в крупнотоннажных произ-вах, напр., аммиака, метанола, азотной к-ты. В струйных компрессорах (инжекторах) ускорение газа происходит в результате смешения потоков разных уд. энергий. При этом газ низкого давления сжимается до промежуточного за счет кинетич. энергии газа, подаваемого под высоким давлением. Вследствие компактности, простоты устройства и надежности эксплуатации струйные машины часто экономически целесообразно использовать, несмотря на невысокий кпд (обычно 0,2-0,25), напр., в качестве тепловых насосов в выпарных установках (см. Выпаривание). Тип компрессора выбирается в соответствии с производительностью и требуемым давлением (рис. 7). В хим. пром-сти часто комбинируют разл. машины, напр. последовательно устанавливают центробежные и поршневые компрессоры. Сравнение характеристик работы машин разных типов примерно одинаковой производительности показывает, что поршневые компрессоры значит. более экономичны, чем остальные машины, но уступают им по металлоемкости и надежности. Два наиб. важных типа компрессоров - поршневые и турбокомпрессоры-скорее не конкурируют, а дополняют друг друга, причем в каждом конкретном случае оптимально применение того или иного типа машин в зависимости от сочетания условий функционирования (показателя политропы, плотности, влажности, агрессивности и степени загрязнения газов, стоимости машин и др.). Однако турбокомпрессоры предпочтительнее использовать при Q=900 м 3/мин и выше. Роторные компрессоры занимают промежут. положение между поршневыми и центробежными. При Q=60-90
Рис. 7. Области применения компрессоров: 1-3 -поршневых (соотв. вертикальных, оппозитных и угловых W-образных); 4 - центробежных; 5 - осевых; 6, 7 - роторных (соотв. жидкостнокольцевых и пластинчатых).
м 3/мин сжатый газ, не загрязненный маслом, получают с помощью роторных, в частности винтовых, машин. При Q =12-60 м 3/мин целесообразно применять поршневые компрессоры, потребляющие меньшую уд. мощность, чем роторные. Особую группу К. м. составляют компрессоры холодильных установок (см. Холодильные процессы), или холодильные компрессоры. Последние предназначены для сжатия паров холодильных агентов (хладонов, аммиака, пропана, этана, этилена, метана и т. д.) до давления конденсации и для их циркуляции. Осн. типы этих компрессоров: поршневые, роторные (винтовые) и центробежные. Конструктивно они не отличаются от рассмотренных выше, однако их конфигурация, масса, габаритные размеры и прочностные характеристики определяются св-вами холодильных агентов. Лит.: Рахмилевич 3. 3., Мыслицкий Е. Н., Хачатурян С. А., Компрессорные установки в химической промышленности, М., 1977; Киселев Г. Ф., Компрессоры крупнотоннажных агрегатов производства аммиака. М., 1979; Холодильные компрессоры. Справочник, М., 1981; Рахмилевич 3. 3 . Радзин И. М., Фармазов С. А., Справочник механика химических и нефтехимических производств, М., 1985. 3. 3. Рахмилевич.
Источник: КОМПРЕССОРНЫЕ МАШИНЫ
Жидкий гелий
Жи́дкий ге́лий представляет собой бесцветную прозрачную жидкость, кипящую при атмосферном давлении при температуре 4,2 К[1][2] (жидкий 4He). Плотность жидкого гелия при температуре 4,2 К составляет 0,13 г/см³. Обладает малым коэффициентом преломления, из-за чего его трудно увидеть. При нормальном давлении гелий не затвердевает даже при сколь угодно низкой температуре. Твёрдый гелий в α-фазе удаётся получить лишь при давлении выше 25 атм.
Содержание |
История исследований
- В 1898 году Дьюаром получено около 20 см³ жидкого водорода.
- В 1906 году Хейке Камерлинг-Оннесом налажена линия полупромышленного получения жидкого водорода, дающая до 4 л/ч.
- В 1908 году Хейке Камерлинг-Оннес сумел добиться конденсации жидкого гелия в объеме 60 см³ (Нобелевская премия по физике за 1913 год). Для опыта потребовалось 20 литров жидкого водорода, полученного при помощи линии, созданной двумя годами ранее. Низкие температуры, необходимые для конденсации гелия, были достигнуты при адиабатическом дросселировании водорода (см. эффект Джоуля — Томсона).
- В 1930 году[3] Виллем Хендрик Кеезом обнаруживает наличие фазового перехода в жидком гелии при температуре 2,17 К и давлении насыщенных паров 0,005 МПа. Называет фазу, устойчивую выше 2,17 K гелием-I, и фазу, устойчивую ниже 2,17 K гелием-II. Также наблюдает связанные с этим аномалии в теплопроводности (даже называет гелий-II «сверхтеплопроводным»), теплоёмкости, текучести гелия.
- В 1938 году П. Л. Капица открыл сверхтекучесть гелия-II (Нобелевская премия по физике за 1978 год). Квантовомеханическое объяснение явления было дано Л. Д. Ландау в 1941 году (Нобелевская премия по физике за 1962 год).
- В 1948 году удалось ожижить и гелий-3.
- В 1972 году в жидком 3He был также обнаружен фазовый переход. Позже было экспериментально показано, что ниже 2,6 мК и при давлении 34 атм 3He действительно становится сверхтекучим.
- В 2003 году Нобелевской премией по физике отмечены Алексей Алексеевич Абрикосов, Виталий Лазаревич Гинзбург и Энтони Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3.
Физические свойства
Физические свойства гелия сильно отличаются у изотопов 4He и 3He:
| Свойство | 4He | 3He |
|---|---|---|
| Температура плавления, К | 2,0 (3,76 МПа) | 1,0 (3,87 МПа) |
| Температура кипения, К | 4,215 | 3,19 |
| Минимальное давление плавления, атм | 25 | 29 (0,3 K) |
| Плотность газообразного, кг/м3 | 0,178 | 0,134 |
| Плотность жидкого, кг/м3 | 145 (0 К) | 82,35 |
| tкрит, К | 5,25 | 3,35 |
| pкрит, МПа | 0,23 | 0,12 |
| dкрит, кг/м3 | 69,3 | 41,3 |
Свойства гелия-4
Жидкий гелий — квантовая жидкость (бозе-жидкость), то есть жидкость, в макроскопическом объёме которой проявляются квантовые свойства составляющих её атомов. Квантовые эффекты существенны при очень низких температурах.
Выше температуры 2,17 К 4Не ведет себя как обычная криожидкость, то есть кипит, выделяя пузырьки газа. При достижении температуры 2,17 К (при давлении паров 0,005 МПа — так называемая λ-точка) жидкий 4Не претерпевает фазовый переход второго рода, сопровождающийся резким изменением ряда свойств: теплоемкости, вязкости, плотности и др. В жидком гелии при температуре ниже температуры перехода одновременно сосуществуют 2 фазы, Не I и Не II с сильно различающимися свойствами.
Сверхтекучесть и сверхтеплопроводность
Фазовый переход в гелии хорошо заметен, он проявляется в том, что кипение прекращается, жидкость становится совершено прозрачной. Испарение гелия, конечно, продолжается, но оно идет исключительно с поверхности. Различие в поведении объясняется необычайно высокой теплопроводностью сверхтекучей фазы (во много миллионов раз выше, чем у Не I). При этом вязкость нормальной фазы остается практически неизменной, что следует из измерений вязкости методом колеблющегося диска. С увеличением давления температура перехода смещается в область более низких температур. Линия разграничения этих фаз называется λ-линией. На рисунке приведена фазовая диаграмма 4Не.
Для Не II характерна сверхтекучесть — способность протекать без трения через узкие (диаметром менее 100 нм) капилляры и щели. Относительное содержание Не II растет с понижением температуры и достигает 100 % при абсолютном нуле температуры — с этим были связаны попытки получения сверхнизких температур пропусканием жидкого гелия через очень тонкий капилляр, через который пройдет только сверхтекучая компонента. Однако, за счет того что при температурах, близких к абсолютному нулю, теплоемкость также стремится к нулю, добиться существенных результатов не удалось — за счет неизбежного нагрева от стенок капилляра и излучения. За счет сверхтекучести и достигается аномально высокая теплопроводность гелия — теплообмен идет не за счет теплопередачи, а за счет конвекции сверхтекучей компоненты в противоток нормальной, которая переносит тепло (сверхтекучая компонента не может переносить тепло). Это свойство открыто в 1938 году П. Л. Капицей.
| Гелия в промежуточном состоянии между этими двумя в природе не существует: либо он при абсолютном нуле, либо он в другом состоянии, нормальном. Гелий в сверхтекучем состоянии не может давить на заслонку, и вообще сверхтекучая жидкость не может производить никакого давления, так как это жидкость, вязкость которой равняется нулю, — мы ее динамическими методами обнаружить не можем.[4]
П. Л. Капица
|
Второй звук
За счет одновременного наличия двух фаз в жидком гелии, имеется две скорости звука и специфическое явление — так называемый «второй звук». Второй звук — слабозатухающие колебания температуры и энтропии в сверхтекучем гелии. Скорость распространения второго звука определяется из уравнений гидродинамики сверхтекучей жидкости в двухкомпонентной модели. Если пренебречь аномально малым для гелия коэффициентом теплового расширения, то в волне второго звука осциллируют только температура и энтропия, а плотность и давление остаются постоянными. Распространение второго звука не сопровождается переносом вещества.
Второй звук можно также интерпретировать как колебания концентрации квазичастиц в сверхтекучем гелии. В чистом 4He это колебания в системе ротонов и фононов.
Существование второго звука было предсказано теоретически Ландау, расчетное значение равнялось 25 м/с. Фактически измеренное — 19,6 м/с[4].
Свойства гелия-3
Жидкий гелий-3 это квантовая ферми-жидкость, то есть она состоит из частиц фермионов со спином ½. В таких системах сверхтекучесть может осуществляться при определённых условиях, когда между фермионами имеются силы притяжения, которые приводят к образованию связанных состояний пар фермионов, т. н. куперовских пар (эффект Купера).
Куперовские пары обладают целым спином, поэтому могут образовывать Бозе-конденсат. Сверхтекучесть такого рода осуществляется для электронов в некоторых металлах и носит название сверхпроводимости. Аналогичная ситуация имеет место в жидком 3He, атомы которого имеют спин ½ и образуют типичную квантовую ферми-жидкость. Свойства ферми-жидкости можно описать как свойства газа квазичастиц-фермионов с эффективной массой примерно в 3 раза большей, чем масса атома 3He. Силы притяжения между квазичастицами в 3He очень малы, лишь при температурах порядка нескольких мК в 3He создаются условия для образования куперовских пар квазичастиц и возникновения сверхтекучести. Открытию сверхтекучести у 3He способствовало освоение эффективных методов получения низких температур — эффекта Померанчука и магнитного охлаждения. С их помощью удалось выяснить характерные особенности диаграммы состояния 3He при сверхнизких температурах. Переход нормальной ферми-жидкости в фазу А представляет собой фазовый переход II рода (теплота фазового перехода равна нулю). В фазе A образовавшиеся куперовские пары обладают спином 1 и отличным от нуля моментом импульса. В ней могут возникать области с общими для всех пар направлениями спинов и моментов импульса. Поэтому фаза А является анизотропной жидкостью. В магнитном поле фаза А расщепляется на две фазы (A1 и A2), каждая из которых также является анизотропной. Переход из сверхтекучей фазы А в сверхтекучую фазу В является фазовым переходом I рода с теплотой перехода ~1,5·10−6 дж/моль. Магнитная восприимчивость 3He при переходе А→В скачком уменьшается и продолжает затем уменьшаться с понижением температуры. Фаза В является, по-видимому, изотропной.
Хранение и транспортировка
Жидкий гелий перевозят в специальных транспортных сосудах (Сосуд Дьюара) типа СТГ-10, СТГ-25, СТГ-40 и СТГ-100 светло-серого цвета объемом 10, 25, 40 и 100 литров соответственно. Сосуды с жидким гелием должны транспортироваться и храниться в вертикальном положении.
Гелий в сосудах Дьюара всегда хранится под небольшим давлением, за счет естественного испарения жидкости — это позволяет в случае небольшой негерметичности не допустить загрязнения гелия снегом из воздуха. Избыточное давление стравливается через клапан. На практике, так как гелий достаточно дорогой, то чтобы газ не выпускать в атмосферу, на головной части дьюара размещается соединительная часть для подсоединения дьюара к гелиевой сети, по которой газообразный гелий собирается для повторного использования. Как правило, на этом же узле крепится манометр для контроля давления и аварийный клапан.
Гелиевые дьюары переворачивать нельзя, для переливания содержимого применяют специальные сифоны.
Гелий имеет очень низкую теплоту испарения (в 20 раз меньше, чем у водорода), но зато высокую теплопроводность. Поэтому к качеству теплоизоляции гелиевых дьюаров предъявляются высокие требования. При повреждении вакуумной изоляции (особенно, если в полость попадает гелий) жидкость так бурно вскипает, что дьюар может лопнуть (взорваться). Как правило, для снижения потерь гелия на испарение, используется «азотная рубашка» — непосредственно в вакуумной полости сосуда Дюара расположена ещё одна оболочка, которая охлаждается кипящим жидким азотом (температура 77К). За счет этого удается существенно сократить тепловой обмен между гелием и атмосферой.
Применение жидкого гелия
- криожидкость для получения и поддержания низких и сверхнизких температур (в основном в научных исследованиях);
- охлаждение сверхпроводящих магнитов;
- использование в криостатах растворения;
- использование в туннельных сканирующих микроскопах;
- ускорители элементарных частиц, так в Большом адронном коллайдере в ЦЕРНе используется 96 тонн жидкого гелия для поддержания температуры 1,9 K[5]
- криогенные электрические машины;
- охлаждение детекторов инфракрасного и высокочастотного излучения, сквид-магнетометров;
- медицинская техника.
Примечания
- ↑ Химическая энциклопедия. В 5-ти тт. / Редкол.: Кнунянц И. Л. (гл. ред.). — М.: Советская энциклопедия, 1988. — Т. 1. — С. 513-514. — 623 с. — 100 000 экз.
- ↑ Реперные точки ВПТШ-76
- ↑ Наука и техника: Физика/СВЕРХТЕКУЧЕСТЬ
- ↑ 1 2 Академик П. Л. Капица, Свойства жидкого гелия
- ↑ LHC Guide booklet «CERN — LHC: Facts and Figures». CERN. Guide booklet. Retrieved on 2008-04-30.
Ссылки
Научно-популярные ресурсы
- Свойства жидкого гелия — доклад академика П. Л. Капицы, «Природа», N12, 1997.
Книги, обзорные статьи
- Сверхтекучий 3He: ранняя история глазами теоретика — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
- Г. Воловик, «Universe in a helium droplet», Oxford University Press, 2004, 529 стр., книга доступна на сайте автора (PDF, 3,5 Мб).
- Физика низких температур
- Жидкость
Источник: Жидкий гелий
выстрел гранатомётный ВОГ-17
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Смотри также:
|
Источник: выстрел гранатомётный ВОГ-17
ГАЗОВ УВЛАЖНЕНИЕ
применяют: 1) для охлаждения газов перед сухой очисткой и повышения эффективности электрической и мокрой очистки от пыли (см. Газов очистка, Пылеулавливание);2) при кондиционировании воздуха.
Газы увлажняются обычно при их контакте с испаряющейся жидкостью (чаще всего водой). Благодаря массообмену (диффузия паров испаряющейся жидкости) и теплообмену (конвективный нагрев жидкости) происходит не только увлажнение, но и охлаждение газа (см. Градирни). Менее экономично смешение газов с водяным паром.
Содержание влаги в газах характеризуется: абс. влагосодержанием X; парциальным давлением водяных паров р n (Па); относит. влажностью (%); росы точкой, или т-рой насыщения (см. также Влажность).
Значения давления насыщ. паров р нас и Xнасыщ. газов при нормальном давлении (101,3 кПа) находят из таблиц или определяют с помощью психрометрич. диаграмм, напр. диаграммы I -Х(I-уд. энтальпия влажного воздуха в Дж/кг сухого воздуха), построенной для смесей водяного пара с газами, близкими по св-вам воздуху.
Диаграмма I -Х отражает связь четырех осн. параметров: I, X, > и т-ры влажного ненасыщ. воздуха, наз. т-рой сухого термометра. Для любого состояния воздуха (или газа, близкого ему по св-вам), зная два из этих параметров, можно найти остальные.
Значения Xрассчитывают по ф-ле:
где М п, М г -соотв. молярные массы водяного пара и сухих газов (кг/кмоль); р- общее давление парогазовой смеси (Па). При повыш. давлении р п определяют по ф-ле (1) при условии, что газы, образующие парогазовую смесь, ведут себя как идеальные, а точку росы находят по таблице или диаграмме (для нормального давления) как т-ру насыщения, отвечающую рассчитанному значению р п.
Влажность газов м. б. определена разл. методами (см. Акваметрия, Влагомеры и гигрометры).
Испарит. охлаждение производится до т-ры, превышающей точку, росы или равной ей. В пром-сти исключительно важно Г. у. с полным испарением орошающей жидкости, достигаемое при подаче на орошение тонко диспергированных капель.
Расчет Г. у. в идеальном случае м. б. выполнен по диаграмме I -Х. На практике конечное влагосодержание газов X' (кг/кг сухих газов), обеспечиваемое в контактных теплообменниках, вычисляют по след. эмпирич. ф-ле:
где I пг -уд. энтальпия парогазовой смеси при начальных условиях; m-отношение расходов орошающей жидкости и газов (кг жидкости на 1 кг сухих газов); -изменение уд. энтальпии орошающей жидкости при ее нагревании или охлаждении от начальной т-ры до конечной или до т-ры мокрого термометра. (При испарит. охлаждении жидкость охлаждается, если ее начальная т-ра выше т-ры мокрого термометра, при к-рой устанавливается динамич. равновесие у пов-сти воды, т. е. скорость теплоотдачи конвекцией к пов-сти и скорость массоотдачи от пов-сти равны.)
Контактные испарит. теплообменники (скрубберы) представляют собой, как правило, полые камеры или колонны, в к-рые жидкость подается посредством мех. или пневматич. форсунок. Продолжительность испарения капель пропорциональна квадрату их диаметра, вследствие чего в скрубберах целесообразно тонко распылять орошающую жидкость. Пневматич. форсунки обеспечивают более тонкое распыливание воды и менее чувствительны к ее чистоте, чем механические, имеющие небольшие отверстия истечения, однако их применение связано с подводом дополнит. потока воздуха (или газа).
Наиб. распространенные конструкции испарит. скрубберов показаны на рисунке. Полый форсуночный скруббер (а)снабжен мех. форсунками, работающими под большим давлением (2,0-4,5 МПа); гидравлич. сопротивление аппарата не превышает 0,2-0,3 кПа.
Конструкции аппаратов испарит. охлаждения: а-полый форсуночный скруббер; б-скруббер с наружной водяной рубашкой; в-скруббер с конфузорным подводом газов; г-пневматич. распиливающее устройство;1 - форсунка; 2-водяная рубашка; 3 - конфузорный насадок; 4-горловина трубы-распылителя.
Скруббер с наружной водяной рубашкой (б)благодаря подаче в нее части воды м. б. изготовлен из углеродистой стали даже при охлаждении газов с т-рой порядка 1000
Источник: ГАЗОВ УВЛАЖНЕНИЕ








/2907/PoliceShirt_sg_ls-150x150.jpg)
/2907/PoliceShirt_sg_ss-150x150.jpg)


/2907/PoliceShirt_w_ss-150x150.jpg)





/2907/PoliceShirt_w_ls-150x150.jpg)


/Shirt/rubashka-SG-KR-noquantity-150x150.jpg)

/Shirt/rubashka-SG-DR-W-noquantity-150x150.jpg)

























