Магазин форменной и спецодежды
- Вес: 27г
- Массивный клапан закрывающий «сосок» системы. Актуально при активном использовании в комплекте с разгрузочными системами. Клапан сидит очень плотно. Вероятность самостоятельного открывания крайне низка
- Надежный поворотный запирающий клапан
- Специальный механизм разбора клапана. Нажмите кнопку и потяните черную «соску»
- Более долговечная и удобная, по сравнению со штатным клапаном, система «соски»
ОБЗОРЫ:
- Обзор на сайте "Russel-а"
- Одежда
- Обувь
- Аксессуары
- Снаряжение
- Туризм
- Палатки
- Насосы
- Все для велотуризма
- Батуты
- Гриль
- Ледобуры
- Мячи
- Биотуалеты
- Тенты
- Рыбалка
- Посуда
- Сублиматы
- Коврики
- Мебель
- Спальники
- Мешки
- Гамаки
- Лодки
- Постельные принадлежности
- Спортивный инвентарь
- Средства от насекомых
- Треккинговые палки
- Лыжи, санки, доски
- Прочее
- Непромокаемое
- Коньки, ролики, самокаты
- Туалетные принадлежности
- Сувениры
- Знаки различия
Обратный клапан
Обратный клапан — вид защитной трубопроводной арматуры, предназначенный для недопущения изменения направления потока среды в технологической системе. Обратные клапаны пропускают среду в одном направлении и предотвращают её движение в противоположном, действуя при этом автоматически и являясь арматурой прямого действия (наряду с предохранительными клапанами и регуляторами давления прямого действия). С помощью обратной арматуры защищается различное оборудование, трубопроводы, насосы и сосуды под давлением, а также возможно существенно ограничить течь рабочей среды из системы при разрушении её участка.
Важность функции этих устройств заключается в том, что они выполняют свою задачу как в режиме нормальной эксплуатации, например в случае объединения напорных линий нескольких насосов в одну, на каждой из них устанавливается один или несколько обратных клапанов для защиты от давления работающего насоса остальных, так и в аварийных ситуациях, например при аварийном падении давления на одном из участков трубопровода, на смежных давление сохраняется, что может привести к образованию обратного тока среды, недопустимого для нормальной работы системы и опасного для её оборудования.
Основными видами обратных клапанов являются собственно обратные клапаны и обратные затворы, главное их различие — в конструкции затвора (элемента, перекрывающего поток среды, садясь в седло), у первых он выполняется в виде золотника, у вторых — в виде круглого диска, который часто именуют захлопка.
Обратные клапаны как правило устанавливаются на горизонтальных участках трубопроводов, а затворы — как на горизонтальных, так и на вертикальных участках. По направлению потока рабочей среды клапаны обратные в основном выполняются проходными (направление потока в них не изменяется), но встречаются и угловые (направление потока меняется на 90°), а затворы обратные — только проходными[1][2].
Содержание |
Принцип действия
При отсутствии потока среды через арматуру золотник в обратном клапане или захлопка в обратном затворе под действием собственного веса или дополнительных устройств (например пружины) находятся в положении «закрыто», то есть затвор находится в седле корпуса. При возникновении потока затвор под действием его энергии открывает проход через седло. Ясно, что для того, чтобы поток среды изменил своё направление на противоположный он должен остановиться. В этот момент скорость потока становится нулевой, затвор возвращается в исходное закрытое положение, а давление с обратной стороны прижимает золотник или захлопку, препятствуя возникновению обратного потока среды. Таким образом, срабатывание обратной арматуры происходит под действием самой среды и является полностью автоматическим[1].
Конструктивные типы
Обратный клапан
Обратные клапаны до 1982 года в России назывались подъемными клапанами[3], затвором в них служит золотник, который перемещается возвратно-поступательно по направлению потока среды через седло.
По конструкции и технологии изготовления обратные клапаны проще, чем другие типы, при этом позволяют обеспечить надёжную герметичность, но такие устройства более чувствительны к загрязнённым средам, при воздействии которых возможно заедание клапана.
В обратных клапанах ось прохода в седле корпуса и, соответственно, ось подъема золотника расположены как правило перпендикулярно оси трубопровода. Корпус обратного клапана практически аналогичен корпусу запорного клапана, но крышки и золотники обратных и запорных клапанов существенно отличаются. Золотник обратного клапана имеет хвостовик, который перемещается по направляющей в крышке клапана. Чаще всего посадка золотника на седло происходит под действием собственного веса, что требует установки обратных клапанов только на горизонтальных участках трубопроводов. Чтобы обеспечить посадку золотника на седло при установке клапана на вертикальных или наклонных участках, используют пружину в качестве дополнительного прижимного элемента.
Имеются конструкции обратных клапанов специально для вертикальных трубопроводов, например:
Шаровые обратные клапаны
Затвором в них служит шаровой элемент, а прижимным элементом — пружина. Такие обратные клапаны обычно применяются на малых диаметрах трубопроводов, в основном в сантехнике.
Приёмные обратные клапаны
Такие устройства устанавливаются на конце вертикального всасывающего трубопровода перед насосом. Они имеют сетку, предохраняющую насос от попадания в него со средой твёрдых частиц или посторонних предметов. Такие клапаны изготовляются с диаметрами до 200 мм. На рисунке слева изображена приёмная сетка таких устройств.[1]
Обратный затвор
Ранее эти устройства назывались поворотными обратными клапанами[3]. В отличие от большинства видов обратных клапанов, в обратных затворах ось седла совпадает с направлением потока среды через затвор. Седло при отсутствии потока через него перекрывается захлопкой (на рис. справа выделена красным цветом, на рис. слева вид на захлопку изнутри), которая закреплена на оси, расположенной выше оси прохода. Под действием среды захлопка поворачивается на некоторый угол, открывая ей проход, при остановке потока захлопка под собственным весом падает на седло. В затворах с большими диаметрами при этом происходит удар захлопки о седло, что со временем может привести к выходу затвора из строя и появляется возможность гидравлического удара в системе при срабатывании устройства. В связи с этим обратные затворы делятся на[2]:
Простые
Затворы с диаметрами до 400 мм, в которых ударные явления не оказывают серьёзного влияния на работу затвора и систему, в которой он установлен.
Безударные
Затворы со специальными устройствами, которые делают посадку захлопки на седло более плавной и мягкой. В качестве таких устройств применяются гидравлические демпферы и грузы, устанавливаемые на захлопку непосредственно, или с помощью рычага. Существенный минус безударных конструкций заключается в невозможности их установки на любых участках трубопровода, кроме горизонтальных. В целом обратные затворы имеют ряд преимуществ перед обратными клапанами, среди которых меньшая чувствительность к загрязнённым средам и возможность обеспечения работоспособности затворов для весьма больших диаметров трубопроводов, например таких как гигантский обратный затвор на рисунке, использующийся NASA в воздушных системах[1].
Межфланцевые обратные клапаны
Более компактные технические решения для уменьшения строительной длины и затрат на монтаж используются в межфланцевых пружинных дисковых и двустворчатых обратных клапанах. Основное их отличие от стандартных обратных клапанов (затворов) — отсутствие фланцев для соединения с трубопроводами. То есть конструктивные особенности клапана позволяют обойтись без увеличивающих размеры и массу оборудования ответных фланцев. При этом вес межфланцевого обратного клапана может быть в 5 раз меньше, а строительная длина — может в 6-8 раз меньше чем у аналогичных конструкций с использованием обычных обратных клапанов или затворов. Клапаны, имеющие рабочие элементы по размерам движущегося потока, монтируются во фланцевых разрывах трубопроводов с использованием соответствующих для перекачиваемого материала прокладок. Принципиальным также является возможность установки подобных клапанов не только на горизонтальных, но и вертикальных участках трубопроводов. Межфланцевые пружинные дисковые обратные клапаны могут оснащаться специальными резьбовыми отверстиями для снятия статического заряда. Подобная модификация востребована на взрывоопасных химических производствах.
Межфланцевые пружинные дисковые обратные клапаны
Принцип действия межфланцевых пружинных дисковых обратных клапанов аналогичен приципу действия шаровых обратных клапанов. Но за счет использования в качестве затвора диска (пластины) вместо шара достигаются преимущества в весе и строительной длине конструкции. По этой же причине диапазон размеров межфланцевых пружинных дисковых обратных клапанов больше и составляет 15÷200 мм. Межфланцевые пружинные дисковые обратные клапаны могут устанавливаться и в стандартном горизонтальном исполнении, а также — вертикально.
Межфланцевые двустворчатые обратные клапаны
Диапазон размеров межфланцевых двустворчатых обратных клапанов ещё шире, чем у межфланцевых пружинных дисковых обратных клапанов — от 50 до 700 мм. В сложных и больших системах при остановах насосов или в результате каких-либо аварийных ситуаций могут возникать гидроудары, которые могут нанести существенный ущерб всей системе. В таких случаях рекомендуется использовать клапаны с амортизаторами для демпфирования гидроударов. Актуально также исполнение клапанов со специальной антикоррозионной футеровкой:
- исполнение с пластиковой футеровкой: для питьевой воды и морской воды
- исполнение с резиновой футеровкой: для морской воды, канализации, судостроения
Другие конструкции
Во всех описанных выше случаях обратная арматура пропускает среду в одном направлении и предотвращает её движение в противоположном, действуя при этом автоматически и являясь арматурой прямого действия, но существуют также конструкции, в которых совмещены функции обратной и запорной арматуры.
Невозвратно-запорные — это обратные клапаны и затворы, которые возможно принудительно закрыть при помощи ручного или механического устройства (пневмо-, гидро- или электропривода).
В невозвратно-управляемых возможно не только принудительное закрытие, но и открытие затвора[1][2][4].
Материалы
Корпусные детали обратных клапанов изготавливаются из:
- латуни;
- бронзы;
- титана;
- высокотемпературной ферритной стали;
- неметаллических материалов;
- чугунов;
- сталей (в том числе аустенитных, легированных и нержавеющих)[1][2].
- коррозионноустойчивых и жаропрочных сплавов Хастеллой и т. п.
Необходимая герметичность затвора на седле обратного клапана обеспечивается специальными уплотнительными поверхностями, которые изготавливаются из:
-
- резины;
- пластмассы;
- без колец;
- с наплавкой из коррозионостойкой стали или твёрдого сплава.
Примечания
- ↑ 1 2 3 4 5 6 Поговорим об арматуре. Р. Ф. Усватов-Усыскин — М.: Vitex, 2005.
- ↑ 1 2 3 4 Трубопроводная арматура. Справочное пособие. Д. Ф. Гуревич — Л.: Машиностроение, 1981.
- ↑ 1 2 В 1982 году вступил силу ГОСТ 24856-81, установивший новые термины и определения в области трубопроводной арматуры.
- ↑ Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С. И. Косых. — Л.: Машиностроение, 1982.
См. также
- Предохранительный клапан
- Регулирующий клапан
- Запорный клапан
- Гидроклапан
- Трубопроводная арматура
- Автоматизация
- Промышленная автоматика
- Гидравлика
- Гидропривод
- Пневмопривод
Источник: Обратный клапан
Р НП АВОК 3.2.1-2008: Квартирные тепловые пункты в многоквартирных жилых домах
Терминология Р НП АВОК 3.2.1-2008: Квартирные тепловые пункты в многоквартирных жилых домах:
5.6 Комплектация КТП приборами учета энергоресурсов
5.6.1 КТП, рассмотренные в 5.1-5.3, в базовом исполнении укомплектованы разъемами для установки приборов учета тепловой энергии и разъемом для установки прибора учета холодной воды с ответвлением на контуры ХВС и ГВС квартиры. Схема движения теплоносителя в КТП позволяет производить полный учет энергоресурсов: суммарный расход холодной воды, в том числе поступающей на нагрев, суммарный расход тепловой энергии, потребляемой на отопление и приготовление горячей воды.
Особенность учета тепловой энергии заключается в резко переменном режиме работы КТП. Прибор учета тепловой энергии должен быстро реагировать на изменения расхода и температуры теплоносителя для обеспечения точности показаний. Соответственно, рекомендуется применять приборы учета с высокой частотой обновления импульсов (до одного импульса в минуту) и малоинерционные датчики температуры.
5.6.2 Помимо установки приборов учета в КТП, также необходимо выполнять централизованный учет в ИТП. На основании показаний приборов учета, установленных в КТП, МОП, на вводе в здание, производится расчет тарифов для оплаты потребленных ресурсов.
5.4 КТП обеспечения локального ГВС
Гидравлическая схема квартирного теплового пункта для обеспечения локального ГВС приведена на рисунке 16.
Рисунок 16 - Гидравлическая схема квартирного теплового пункта для обеспечения локального ГВС:
1 - пластинчатый теплообменник ГВС; 2 - двухходовой гидравлический регулятор-распределитель расхода пропорционального действия; 3 - дроссельная шайба горячего водоснабжения; 4 - ручной воздухоотводчик; 5 - грязеуловитель; 6 - термический мост циркуляции (опция); 7 - контур циркуляции ГВС (опция); 7.1 - термический мост циркуляции контура первичного контура ГВС (опция). При установке элементов 7-7.1 позиция 6 не устанавливается; 9 - запорный шаровой кран
5.4.1 Функционирование КТП обеспечения локального ГВС
Технические характеристики приведены в приложении Б.
Данная схема КТП выполняет только функцию обеспечения ГВС. КТП комплектуется двухходовым РМ-регулятором. Принцип действия аналогичен функционированию контура ГВС, уже рассмотренному в 5.2.2 в совокупности с 5.3.4.
5.4.2 Дополнительная комплектация КТП для обеспечения локального ГВС
Рассматриваемый КТП может быть дополнительно оборудован всеми узлами в блочном исполнении, приведенными в экспликации к рисунку 16. Описание функционирования см. в 5.2.2.2, 5.2.3, 5.2.4.
5.4.3 Применение КТП для обеспечения локального ГВС
КТП с функцией для локального ГВС могут применяться для обеспечения горячей водой удаленных или отдельно стоящих потребителей в пределах квартиры, коттеджа, административно-бытового здания.
5.3 КТП с параллельным режимом работы контуров отопления и ГВС (увеличенной отопительной мощности). Условный приоритет контура ГВС
5.3.1 Базовая комплектация квартирных тепловых пунктов с условной гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления
5.3.2 Особенности функционирования КТП с условной гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления
Технические характеристики приведены в приложении Б.
Данная схема КТП характеризуется большей суммарной тепловой мощностью подключения, т.к. не обеспечивается 100 %-е отключение контура отопления рассматриваемой квартиры в момент потребления горячей воды (в отличие от схем, рассмотренных в 5.2). Расход теплоносителя в контур отопления может ограничиваться только соотношением сопротивлений по отношению к контуру ГВС.
КТП с условной гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления позволяет обеспечить большую по сравнению с КТП со схемой приоритетного ГВС отопительную нагрузку. В основном это достигается за счет увеличения проходного сечения трубопроводов подключения КТП к системе теплоснабжения и отопительного контура квартиры Т11, Т12, Т21 и Т22, а также за счет изменения схемы движения теплоносителя, что по сравнению со схемой, рассмотренной в 5.1 позволяет обеспечить более низкие параметры гидравлического сопротивления отопительного контура (при больших расходах теплоносителя) и тем самым увеличить пропускную отопительную способность КТП.
5.3.3 Применение КТП с условной гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления
Квартирные тепловые пункты увеличенной отопительной мощности (рисунок 15) применяются, если среднесуточное соотношение нагрузок горячего водоснабжения и отопления за отопительный период превышает 50 % при расчетной температуре наружного воздуха для проектирования отопления выше -30 °С и при любом соотношении нагрузок для районов с более низкой расчетной температурой наружного воздуха. При озвученных условиях также возможно применение КТП с приоритетным режимом ГВС (см. 5.1) при условии выполнения проверки способности ограждающих конструкций здания обеспечивать требуемые параметры температуры в помещении при работе КТП в режиме приоритета ГВС в период пикового разбора горячей воды.
Рисунок 15 - Гидравлическая схема квартирного теплового пункта с условной гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления:
1 - пластинчатый теплообменник ГВС; 2 - двухходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Применение КТП с гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления актуально при использовании схемы с КТП для теплоснабжения помещений больших площадей или отдельных помещений административно-бытовых зданий, мест общего пользования с организацией полного учета энергоресурсов, коттеджей, подключенных к центральной котельной.
5.3.4 Двухходовой РМ-регулятор
В КТП с условной гидравлической связью режима работы водонагревателя горячего водоснабжения и системы отопления применяется двухходовой РМ-регулятор, функцией которого является включение/отключение контура ГВС и пропорциональное регулирование его работы. Принцип действия аналогичен описанному в 5.2.2.1 (исключая приоритет). Все пункты раздела 5.2 применимы и для схемы КТП с условной гидравлической связью. Двухходовой РМ-регулятор имеет дроссель первичного контура для возможности регулирования расхода теплоносителя при изменении температурного графика СТС.
5.2 Описание функционирования КТП с приоритетным режимом ГВС
Технические характеристики приведены в приложении Б.
5.2.1 КТП в режиме отопления. Управление отопительным контуром квартиры
Греющий теплоноситель Т11 от домового теплового пункта поступает в КТП, проходит через грязеуловитель б и перераспределяется в зависимости от режима (отопление или приготовление горячей воды) в систему отопления Т12 (по зависимой схеме) или водонагреватель горячего водоснабжения. В режиме отопления, пройдя отопительный контур (ОК) квартиры теплоноситель Т21 также проходит грязеуловитель и через зональный клапан 5, регулирующий подачу теплоносителя на отопление, поступает в третий ход пропорционального регулятора-распределителя расхода 2, после которого проходит прибор учета тепловой энергии (если установлен) 8 и возвращается в обратный трубопровод Т22 системы теплоснабжения здания.
5.2.1.1 Радиаторное отопление
В отопительный контур квартиры подается расход теплоносителя для покрытия тепловых потерь, не более требуемого по расчету. Для ограничения расхода теплоносителя, поступающего в контур отопления, на стадии наладки устанавливается преднастройка на зональном клапане (рисунок 1, позиция 5). Настройка определяется расчетным путем и учитывает дополнительное сопротивление отопительного контура по отношению к контуру ГВС рассматриваемой квартиры для их гидравлического согласования и исключения возникновения шумов в системе отопления. Регулирование температуры в комнатах может осуществляться термостатическими регуляторами, установленными на радиаторах отопления или посредством центрального электронного термостата, установленного в контрольном помещении. Во втором случае сигнал от центрального термостата подается на исполнительный двухпозиционный термоэлектрический привод, устанавливаемый на зональном клапане 5 КТП. При этом осуществляется отопление методом местных пропусков. Применение центрального термостата позволяет вводить индивидуальную программу отопления. Также систему отопления квартиры возможно разделить на контуры с установкой термостатов в каждом помещении квартиры (лучевая разводка СО). От термостата подается сигнал на клапан своей зоны (КТП комплектуется распределителем).
Для организации системы отопления квартиры применимы как кольцевая, так и лучевая схемы разводки.
5.2.1.2 Отопление помещений системой «теплый пол»
Возможно осуществление отопления квартиры системой теплых полов (пониженный температурный график). Для этого в КТП модульно устанавливается смесительный узел с насосом (рисунок 2). Возможны различные варианты управления трехходовым смесителем: термостатическое, электронное трехпозиционное по температуре в помещении или погодозависимое. Подключение контура теплых полов к системе осуществляется по зависимой схеме через встроенную в узел перепускную линию 11.
Рисунок 2 - Схема КТП со смесительным узлом для отопления системой теплых полов:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - перепускная линия (первичный байпас); 12 - трехходовой смеситель; 13 - термостатический привод смесителя; 14 - электрический привод смесителя, 220 В; 15 - циркуляционный насос; 16 - регулируемый байпас; 17 - контроллер; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.1.3 Комбинированное отопление Возможна схема КТП, обеспечивающая сочетание радиаторного отопления и отопления системой «теплый пол» (рисунок 3). Принцип работы описан в 5.2.1.1 и 5.2.1.2.
Рисунок 3 - Схема КТП со смесительным узлом для сочетания радиаторного отопления и системы теплых полов:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.2 КТП в режиме горячего водоснабжения
Включением/отключением режима ГВС в КТП управляет гидравлический регулятор-распределитель расхода пропорционального действия (РМ-регулятор, от нем. Proportional Mengen - «пропорционально расходу»). РМ-регулятор выпускается в двух вариантах исполнения - двухходовой или трехходовой с функцией приоритета ГВС.
В зависимости от типоразмера водонагревателя, установленного в КТП, применяются соответствующие диаграммы для определения параметров теплоносителя для обеспечения нагрева питьевой воды (см. приложение Б). В любом случае в режиме ГВС после водонагревателя КТП обеспечивается низкая температура обратной магистрали Т21 в силу проточного (противоточная схема движения теплоносителя) режима нагрева питьевой воды.
5.2.2.1 Режим горячего водоснабжения (только для КТП с функцией приоритета ГВС). Отопительный период
В режиме отопления теплоноситель Т21 циркулирует через третий ход 4 РМ-регулятора (рисунок 4а).
Рисунок 4 - Схема работы трехходового гидравлического регулятора-распределителя расхода пропорционального действия с функцией приоритета ГВС:
1 - возвратная пружина штока; 2 – импульсная линия давления; 3 - дроссель контура отопления (3-ий ход); 4 - третий ход РМ-регулятора; 5 - шток; 6 - мембрана
При открытии крана прибора разбора горячей воды возникает перепад давлений на мембране 6 РМ-регулятора, перемещающий ее и жестко скрепленный с ней шток 5 из начального положения «контур отопления открыт - контур ГВС закрыт» в положение «контур отопления закрыт - контур ГВС открыт» и производит регулирование подачи теплоносителя в проточный водонагреватель пропорционально расходу поступающей в противоточном режиме питьевой воды В1. При этом весь теплоноситель Т11, поступающий в КТП, направляется в контур ГВС, после которого проходит прибор учета тепла и поступает в обратный трубопровод системы теплоснабжения Т22. С закрытием крана прибора разбора горячей воды через выполненную в корпусе РМ-регулятора импульсную линию 2 перепад давлений на мембране 6 исчезает и возвратная пружина 1 переводит шток в исходное положение - отопление продолжается, контур ГВС перекрыт.
5.2.2.2 Режим горячего водоснабжения. Летний период эксплуатации. Термический мост циркуляции
В схеме теплоснабжения с КТП необходимо обеспечить циркуляцию греющего теплоносителя Т11 в летний период эксплуатации (отсутствие отопительной нагрузки) для обеспечения нагрева горячей воды Т3 в водонагревателе КТП. Для этого в зависимости от принятой схемы разводящих сетей здания (см. пункт 10) требуется сделать следующее.
При схеме 1 пункта 10: в каждом, удаленном более чем на 3 м от распределительной магистрали теплоносителя, КТП устанавливается термический мост циркуляции (регулятор температуры «после себя»), который имеет настроечную шкалу 45-65 °С. (рисунок 5, позиция 11).
При схеме 2 пункта 10: термический мост циркуляции устанавливается в крайних по ходу движения теплоносителя КТП, подключенных к рассматриваемому стояку или устанавливается выносной термический мост циркуляции в крайней по ходу движения теплоносителя точке стояка (например, на техническом этаже) (рисунок 6).
Рисунок 5 - Схема КТП, укомплектованного термическим мостом циркуляции:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термический мост циркуляции; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 6 - Термический мост циркуляции, устанавливаемый на теплоснабжающем стояке:
а - верхний мост циркуляции; б - нижний мост циркуляции; 1 - автоматический воздухоотводчик; 2 - термический мост циркуляции; 3 - сливной кран
При таком решении обеспечивается стабильная температура греющего теплоносителя Т11 перед водонагревателем, достаточная для нагрева расчетного количества питьевой воды до нормативного уровня при отсутствии отопительной нагрузки.
Роль термического моста циркуляции может выполнять RTL-вентиль (return temperature limiter) установленный на радиаторе ванной комнаты (полотенцесушителе) (см. 5.2.5.1).
Режим работы моста циркуляции представлен на рисунке 7. Применение в системе теплоснабжения термического моста циркуляции позволяет снизить потери тепловой энергии за счет отсутствия централизованной системы ГВС и периодической циркуляции теплоносителя Т11 для нагрева питьевой воды в летний период.
Рисунок 7 - Режим работы термического моста циркуляции
5.2.3 Организация контура ГВС при значительной удаленности приборов разбора горячей воды от места установки КТП
Основным критерием для определения максимальной удаленности прибора разбора горячей воды от КТП является внутренний объем соединяющего их трубопровода, который не должен превышать 30 дм3 (3 л). В противном случае время ожидания схода остывшей воды с участка трубопровода оказывается за рамками комфортных для потребителя условий.
Для обеспечения комфортного горячего водоснабжения в квартирах с удаленными точками разбора горячей воды в КТП возможно модульно установить узел циркуляции горячей воды с таймером (рисунок 8) или термостатическим реле (рисунок 9).
Рисунок 8 - Схема КТП с контуром циркуляции ГВС. Регулирование посредством реле времени и термического моста циркуляции контура ГВС:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термический мост циркуляции первичного контураводонагревателя ГВС; 11' - линия циркуляции горячей воды с насосом, ~220 В; 12 - реле времени, ~220 В; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 9 - Схема КТП с контуром циркуляции ГВС. Регулирование посредством термического реле и соленоидного клапана:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - соленоидный клапан, ~220 В; 12 - термостатическое реле; 13 - циркуляционный насос ГВС, ~220 В; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Также для обеспечения комфортных условий по приготовлению горячей воды в летний период эксплуатации системы необходимо учитывать удаленность расположения КТП от распределительной сети здания и при необходимости комплектовать КТП термическим мостом циркуляции (см. 5.2.2.2).
5.2.4 Обеспечение нормативной температуры горячей воды
Диапазон допустимых температур в системе ГВС регламентируется title="Внутренний водопровод и канализация зданий" «Внутренний водопровод и канализация зданий». Нижний предел температуры горячей воды (50 °С) обеспечивается КТП при соответствии параметров системы теплоснабжения полученным расчетным путем и РМ-регулятором пропорционального действия (см. 5.2.2), а также:
- в случае источника теплоснабжения индивидуальная групповая котельная обеспечивается методом качественно-количественного регулирования тепловой нагрузки. «Срезка» отопительной кривой на уровне 70 °С;
- в случае источника теплоснабжения тепловая сеть обеспечивается методом качественного регулирования тепловой нагрузки. «Срезка» отопительной кривой на уровне 70 °С.
При соотношении гидравлических сопротивлений контуров отопления и ГВС КТП (определяются при выполнении гидравлического расчета, см. приложение Г) DРотопление/DРГВС > 1 в контур ГВС подается расход теплоносителя, превышающий требуемый. В этом случае горячая вода будет перегреваться и поэтому требуется комплектовать КТП термостатическим смесителем ГВС (рисунок 10), обеспечивающим защиту от получения ожога.
Рисунок 10 - Схема КТП с термостатическим смесителем ГВС (защита от возможного ожога):
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термостатический смесительный вентиль для горячей воды - защита от ожога; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Также термостатический смеситель ГВС можно устанавливать для обеспечения безопасности потребителя в случае возникновения нерасчетных параметров в системе теплоснабжения (на усмотрение проектировщика) или комплектоваться на стадии эксплуатации при необходимости.
5.2.5 Организация контура радиатора (полотенцесушителя) и контура теплого пола в ванной комнате. Роль термического моста циркуляции
5.2.5.1 При стандартной схеме теплоснабжения в контуре полотенцесушителя циркулирует вода из системы ГВС. В случае применения схемы с КТП в контуре полотенцесушителя циркулирует теплоноситель. При этом контур полотенцесушителя выполняется в виде ответвления от основного контура отопления квартиры. Это организуется в самом модуле КТП (в виде опции, рисунок 11) или путем местной установки RTL-вентиля на обратной линии контура полотенцесушителя при условии отсутствия центрального регулирования зонального клапана или комплектации КТП распределителем с установкой зонального клапана на каждом ответвлении (рисунок 12, позиция 5).
Рисунок 11 - Организация контура полотенцесушителя с установкой RTL-вентиля в модуле КТП:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль (контур полотенцесушителя); СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 12 - Организация контура полотенцесушителя с установкой RTL-вентиля непосредственно на полотенцесушителе:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
При применении регулятора температуры «после себя» он также выполняет роль термического моста циркуляции (см. 5.2.2.2).
При необходимости установки в КТП контура циркуляции ГВС (см. 5.2.3) возможно подключать контур полотенцесушителя на линию циркуляции.
5.2.6 Схема КТП с ограничителем температуры обратной магистрали контура отопления
Температура обратной магистрали в режиме ГВС описана в 5.2.2 и диаграммах приложения Б.
В режиме отопления расчетная температура обратной магистрали Т22 обеспечивается при соблюдении проектных требований, а также в ИТП с помощью контроллера управления. Помимо этого, при необходимости в КТП модульно возможно установить ограничитель температуры обратной магистрали, который функционирует аналогично термическому мосту циркуляции (см. 5.2.2.2), обеспечивая регулирование «местными пропусками» при превышении температуры обратного потока, заданного на самом элементе.
Рисунок 13 - Схема КТП с ограничителем температуры обратной магистрали контура отопления:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.7 Гидравлическая балансировка КТП в системе
Для гидравлической увязки КТП в системе требуется установка балансировочной арматуры. В зависимости от принимаемой схемы и проектного решения балансировочные клапаны (статические и/или автоматические) устанавливаются на стояках, этажных ответвлениях или/и ответвлениях к КТП (см. также пункт 10). При этом функция клапана заключается в поддержании расчетного перепада давления (автоматический клапан) при изменении расхода теплоносителя по причине включения/отключения нагрузки ГВС в рассматриваемом ответвлении (стояке) или поддержании заданного напора (статический клапан) для рассматриваемого ответвления (стояка), что требуется для ограничения расхода и напора теплоносителя в расчетном режиме. Следует выбирать клапан с диапазоном регулирования, обеспечивающим требуемый перепад давления в расчетном режиме совокупной нагрузки отопления и ГВС всех подключенных к ответвлению (стояку) потребителей. Также возможно укомплектовать КТП балансировочной арматурой модульно (рисунок 14). В основном это применяется при удалении КТП от других потребителей или проектах отдельно стоящих индивидуальных домов.
Рисунок 14 - Схема КТП с автоматическим балансировочным клапаном:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - автоматический балансировочный клапан; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.5 Станция обеспечения ГВС
Технические характеристики приведены в приложении Б. Гидравлическая схема станции обеспечения ГВС приведена на рисунке 17.
Рисунок 17 - Гидравлическая схема станции обеспечения ГВС:
1 - пластинчатый теплообменник ГВС; 2 - контроллер управления; 3 - датчик протока; 4 - циркуляционный насос подачи теплоносителя; 5 - датчики температуры; 6 - ручной воздухоотводчик; 7 - насос циркуляции ГВС (опция)
5.5.1 Функционирование станции обеспечения ГВС
В момент начала разбора горячей воды, датчик протока фиксирует появление расхода и подает сигнал на контроллер 2, который в свою очередь включает циркуляционный насос 4 - станция включается в работу. Питьевая вода нагревается в проточном режиме. По окончании разбора горячей воды станция отключается. Станция также обеспечивает настраиваемый контроллером режим циркуляции горячей воды. Режим нагрева воды устанавливается на стадии наладки.
5.5.2 Особенности применения
Станция имеет высокую мощность по приготовлению горячей воды, которая зависит от производительности циркуляционного насоса (приложение Б). Также для проточного режима нагрева воды характерен низкий уровень температуры обратной линии, как в случае применения КТП (см. 5.2.2). Выбор режима работы описан в приложении Б.
Для обеспечения отключения теплообменника ГВС на период отсутствия водоразбора станцию необходимо подключать к системе теплоснабжения через гидравлический разделитель или буферную емкость теплоносителя для создания зоны нулевого динамического давления на вводе станции.
Возможна последовательная каскадная схема подключения станций ГВС. Подключение осуществляется по линии ввода холодной воды через перепускной клапан (рисунок 18).
Рисунок 18 - Каскадное подключение станций ГВС
1 - станция ГВС без контура циркуляции, 2 - станция ГВС с контуром циркуляции, 3 - перепускной клапан
5.5.3 Применение станции для обеспечения ГВС
Станции ГВС актуальны для децентрализованного обеспечения высоких параметров водоразбора в системах теплоснабжения административно-бытовых зданий, индивидуальных домов при мощности котельной, позволяющей покрыть потребность станции в тепловой мощности в пиковом режиме ГВС, во всех системах с применением буферной емкости теплоносителя или подключенных к локальным тепловым сетям.
Источник: Р НП АВОК 3.2.1-2008: Квартирные тепловые пункты в многоквартирных жилых домах
Описание
3.2. Описание
СИЗОД фильтрующие с принудительной подачей воздуха, используемые с масками, полумасками и четвертьмасками обычно состоят из следующих элементов:
а) одного или нескольких фильтров, через который (которые) проходит весь воздух, подаваемый в подмасочное пространство;
б) блока принудительной подачи воздуха, который подает атмосферный воздух, прошедший через фильтры, в подмасочное пространство либо непосредственно, либо через дыхательный шланг. Источник питания блока принудительной подачи воздуха может быть носимым или не носимым самим пользователем;
в) маски, полумаски или четвертьмаски;
г) клапана выдоха или иного выпускного устройства, через которое отводится выдыхаемый воздух или избыточный поток воздуха, превышающий потребность пользователя.
4.2.1.1.1 Описание : Основа - полиакрил, кварц, кварцевый песок. Изготавливается в заводских условиях. Фактурный материал имеет своеобразный рисунок, напоминающий след червяка. В зависимости от размеров фактурообразующего зерна и глубины следа различаются «КЛАССИК», «КЛАССИК АМАДЕЙ» и «КЛАССИК КОРС».
Смотри также родственные термины:
4.1. Описание вида помехи
Колебаниями напряжения являются периодические изменения огибающей кривой напряжения или серия случайных изменений напряжения (черт. 3, 4), размахи которых обычно находятся внутри диапазона отклонений напряжения, установленного ГОСТ 29322 ( title="Стандартные напряжения") (до ±10 %).
К колебаниям напряжения не относятся медленные изменения напряжения в тех же пределах (до ±10 %), происходящие из-за плавного изменения нагрузки электрической сети.
Провалы напряжения и кратковременные перерывы питания, имеющие амплитуду от 0,1 до 1,0 номинального значения, редки и вызваны в основном короткими замыканиями в сети и действием защитных систем (см. разд. 5).
Колебания напряжения могут быть следующих видов:
периодические прямоугольные изменения напряжения (ступенчатые изменения), равные по значению. Такие колебания возникают, например, при коммутации резистивной нагрузки (черт. 5а);
3.38 описание внедрения (применения) (implementation description): Фаза модели предприятия, которая описывает конечный набор процессов, ресурсов и правил, выполняемых для достижения требуемых эксплуатационных характеристик для выполнения бизнес-процессов и видов деятельности предприятия, указанных на фазе проектной спецификации.
3.76 описание внедрения (применения) (implementation description): Фаза модели предприятия, которая описывает конечный набор процессов, ресурсов и правил, выполняемых для достижения требуемых эксплуатационных (операционных) характеристик для выполнения бизнес-процессов и видов деятельности предприятия, указанных на фазе проектной спецификации.
8.3.1 Описание испытания
8.3.1.1 Защитный корпус должен быть установлен горизонтально на испытательном устройстве таким образом, чтобы можно было надежно блокировать элементы регулировки крепления. Оконечность, наиболее приближенную к точке крепления на элементе регулировки, закрепляют в направлении наибольшего габарита защитного корпуса жестким упором шириной 15 мм, закрывающим всю ширину защитного корпуса.
8.3.1.2 С другой стороны на защитный корпус устанавливают упор, аналогичный описанному выше, для того, чтобы приложить предусмотренную испытательную нагрузку (рисунок 2).
8.3.1.3 Допускается закрепление оконечности защитного корпуса, противоположной той, к которой прикладывают нагрузку, вместо удержания ее в положении, показанном на рисунке 2.
8.3.2 Испытательная нагрузка должна составлять 25 кг и прикладываться в течение 1 мин.
1 - нагрузка; 2 - металлические прокладки; 3 - защитный корпус; 4 - регулируемый упор; 5 - регулируемая опора; 6 - механизм блокировки
8.2.1 Описание испытательного устройства
8.2.1.1 Испытательное устройство должно состоять из маятника, могущего колебаться вокруг двух горизонтальных осей, перпендикулярных друг другу, одна из которых перпендикулярна фронтальной плоскости, в которую вписывается траектория «падения» маятника. На конце маятника должен быть установлен ударный элемент, состоящий из жесткой сферы диаметром (165 ± 1) мм с резиновым покрытием толщиной 5 мм и твердостью по Шору А50. Должно быть предусмотрено устройство, позволяющее засечь максимальный угол, образуемый штангой маятника в плоскости падения. Для фиксации образцов в соответствии с условиями удара, предписанными в 8.2.2.6, служит опора, жестко закрепляемая на станине маятника. На рисунке 1 приведены размеры испытательной установки и специальные конструктивные предписания.
8.2.1.2 Центр удара маятника должен быть совмещен с центром сферы, образующей ударную часть. Расстояние l от центра сферы до оси вращения в плоскости падения составляет (1000 ± 5) мм. Приведенная масса маятника m0в центре удара составляет (6,8 ± 0,05) кг (между т0, общей массой маятника т и расстоянием d от центра тяжести маятника до его оси вращения существует следующее соотношение ).
3.2.4 описание класса (наименование класса) (class description): Выражение содержания класса на естественном языке.
4.1.25 описание класса, наименование классификационного деления: Обозначение класса на естественном языке
3.10.11. описание логической структуры данных* : Файл, содержащий описание ИО и их атрибутов, а также правил, которым должна удовлетворять логическая структура БД.
3.10.11. описание логической структуры данных* : Файл, содержащий описание ИО и их атрибутов, а также правил, которым должна удовлетворять логическая структура БД.
3.10.13. описание логической структуры данных контекстного типа : Совокупность описаний (деклараций) ИО контекстного типа, их атрибутов и связей.
3.10.13. описание логической структуры данных контекстного типа : Совокупность описаний (деклараций) ИО контекстного типа, их атрибутов и связей.
3.10.12. описание логической структуры данных общего типа : Совокупность описаний (деклараций) ИО общего типа, их атрибутов и связей;
3.10.12. описание логической структуры данных общего типа : Совокупность описаний (деклараций) ИО общего типа, их атрибутов и связей;
14.2. Описание ме тодов измерения
14.2.1. Метод 1
Средства измерения: коленчатая оправка с прибором для измерения длин, контрольная оправка. При измерении на станках классов точности А и С применяют коленчатую оправку, несущую два одинаковых прибора для измерения длин, смещенных относительно друг друга на 180°.
Схема измерения указана на черт. 45.
Черт. 45
Проведение измерения
Коленчатую оправку 1 с измерительным прибором 2 устанавливают на одном из проверяемых рабочих органов 3. Контрольной оправкой 4 воспроизводят ось второго проверяемого рабочего органа 5. Измерительный прибор устанавливают так, чтобы его измерительный наконечник касался образующей контрольной оправки и был перпендикулярен ей. Вращая коленчатую оправку, обкатывают два поперечных сечения I и II контрольной оправки, отстоящих друг от друга на заданном расстоянии l. В каждом сечении определяют наибольшую алгебраическую разность показаний измерительного прибора. Отклонение от соосности определяют половиной наибольшего результата измерений. В этом случае в результат измерения входит отклонение от соосности оси контрольной оправки и оси рабочего органа.
Для исключения из результатов измерения отклонения от соосности оси контрольной оправки и оси рабочего органа измерение проводят дважды. Перед вторым измерением контрольную оправку отсоединяют от рабочего органа и поворачивают вокруг проверяемой оси на 180°. Отклонение от соосности каждого сечения равно полусумме результатов двух измерений. Отклонение от соосности проверяемых осей равно наибольшей из указанных полусумм.
Примечание. Если необходимо измерить отклонение от соосности относительно общей оси, то такое измерение проводят по графику. Оси на графике располагают в соответствии с результатами измерений в двух взаимно перпендикулярных продольных сечениях.
Если обрабатывающий инструмент при эксплуатации станка располагают на конце консольной оправки (борштанги), то допускается проводить измерение отклонения от соосности в одном поперечном сечении контрольной оправки. Местонахождение этого сечения должно быть оговорено в нормативно-технической документации на станок конкретного типа.
14.2.2. Метод 2
Средства измерения: две коленчатые оправки с прибором для измерения длин, контрольная оправка.
Схема измерения указана на черт. 46.
Черт. 46
Проведение измерения
На проверяемые рабочие органы 1 и 2 устанавливают коленчатые оправки 3 и 4 с измерительными приборами 5 и 6. Примерно соосно с ними на стол 7 на двух регулируемых опорах 8 устанавливают контрольную оправку 9, при этом наконечники измерительных приборов должны касаться крайних сечений I контрольной оправки и быть перпендикулярными к ней. Регулируя опоры, устанавливают контрольную оправку в положение, при котором показания измерительных приборов при обкатке контрольной оправки будут одинаковыми. Перемещают измерительные приборы по коленчатым оправкам на заданное расстояние l и производят обкатку сечений II.
Отклонение от соосности равно наибольшей алгебраической полуразности показаний измерительных приборов при обкатке второго сечения каждым измерительным прибором.
14.2.3. Метод 3
Средства измерения: зрительная труба, целевая марка, центрирующее устройство для зрительной трубы и целевой марки.
Схема измерения указана на черт. 47.
Черт. 47
Проведение измерения
Зрительную трубу 1 центрируют в отверстии рабочего органа 2. В отверстии рабочего органа 3, в сечении I, расположенном на заданном расстоянии l от базовой плоскости рабочего органа 2, центрируют целевую марку 4.
Измеряют отклонения центра целевой марки от оптической оси в двух взаимно перпендикулярных плоскостях в сечении I. Затем целевую марку с центрирующим устройством перемещают на заданное расстояние l в сечении II и измерения повторяют.
Отклонение от соосности равно наибольшему из результатов измерений.
12.2.4. Метод 4
Средства измерения: две контрольные оправки с равными номинальными диаметрами цилиндрических частей, прибор для измерения длин.
Схема измерения указана на черт. 48.
Черт. 48
Проведение измерения
В отверстия проверяемых рабочих органов 1 и 2 устанавливают контрольные оправки 3 и 4. Измерительный прибор 5 устанавливают на рабочий орган 6, направление перемещения которого параллельно номинальному положению проверяемых осей. Измерительный прибор устанавливают так, чтобы его измерительный наконечник касался образующих контрольных оправок и был перпендикулярен им в плоскости измерения.
Измерение проводят в двух взаимно перпендикулярных плоскостях. Перемещая рабочий орган с измерительным прибором, регистрируют его показания в двух точках, лежащих на одной образующей каждой из оправок. Точки отстоят друг от друга на заданном расстоянии. Отклонение от соосности равно наибольшей алгебраической разности показаний измерительного прибора.
Для исключения из результатов измерения отклонения от соосности осей контрольных оправок с проверяемыми осями измерение проводят так, как указано в п. 14.2.1.
При измерении учитывают разность диаметров цилиндрических частей контрольных оправок.
При измерений на станках классов точности А и С учитывают прогиб контрольных оправок под действием собственного веса и измерительного усилия, указанный в приложении 2.
14.2.1 - 14.2.4 (Измененная редакция, Изм. № 3).
14.2.5. Метод 5
Средства измерения: прибор для измерения длин, державка для крепления измерительного прибора, контрольная оправка.
Схема измерения указана на черт. 48а, 48б и 48в.
Проведение измерения
Державку 1 с измерительным прибором 2 устанавливают на рабочем органе 3 так, чтобы измерительный наконечник измерительного прибора касался поверхности проверяемого рабочего органа 4 или цилиндрической поверхности контрольной оправки 5, установленной в отверстии рабочего органа 4 на заданном расстоянии l от базовой плоскости рабочего органа 3 и был перпендикулярен этим поверхностям в плоскости измерения.
Поворачивая рабочий орган 3 на два оборота измерительным прибором, обкатывают поперечное сечение поверхности рабочего органа 4 или цилиндрической поверхности контрольной оправки. При этом для каждого оборота определяют средние арифметические показания измерительного прибора во взаимно перпендикулярных плоскостях в точках а, а¢, б и б¢.
Отклонение от концентричности в каждой плоскости измерения равно полуразности результатов измерений при двух оборотах. Отклонение от концентричности равно наибольшему из отклонений в каждой плоскости измерения. В этом случае в результат измерения входит радиальное биение поверхности рабочего органа 4 или цилиндрической поверхности контрольной оправки.
Для исключения из результатов измерения радиального биения поверхности рабочего органа 4 или цилиндрической поверхности контрольной оправки измерение проводят дважды.
Черт. 48а
Черт. 48б
Черт. 48в
Перед вторым измерением контрольную оправку или рабочий орган 4 поворачивают на 180° вокруг проверяемой оси. Если рабочий орган 4 при установке на нем контрольной оправки не вращается, то контрольную оправку отсоединяют и также поворачивают на 180° вокруг проверяемой оси. При этом измерения проводят, как указано выше, во взаимно перпендикулярных плоскостях при двух оборотах рабочего органа 3. Отклонение от концентричности в каждой плоскости измерения равно среднему арифметическому полуразностей результатов измерений при двух оборотах, полученных до и после поворота контрольной оправки или рабочего органа 4. Отклонение от концентричности равно наибольшему, из отклонений в каждой плоскости измерения. Примеры расчета отклонений от концентричности приведены в приложении 12а.
14.2.6. Метод 6
Средства измерения: два прибора для измерения длин, державка для крепления измерительных приборов, контрольная оправка.
Схема измерения указана на черт. 48г.
Проведение измерения
Державку 1 с измерительными приборами 2 устанавливают на рабочем органе 3 так, чтобы измерительные наконечники измерительных приборов касались цилиндрической поверхности контрольной оправки 4, установленной в отверстии рабочего органа 5, и были перпендикулярны ей в плоскости измерения.
Черт. 48г
Измерения проводят одновременно двумя измерительными приборами в сечениях I и II контрольной оправки, расположенных на заданном расстоянии l между собой. При этом сечение I должно быть расположено на заданном расстоянии l¢ от базовой плоскости рабочего органа 3, например торца шпинделя (вала).
Измерение в каждом из сечений контрольной оправки I и II проводят, как указано в п. 14.2.5.
При измерении без поворота контрольной оправки на 180° отклонение от соосности в каждой плоскости измерения равно наибольшей из полуразностей результатов измерений, полученных в сечениях I и II при двух оборотах. Отклонение от соосности равно наибольшему из отклонений в каждой плоскости измерения.
При измерении с поворотом контрольной оправки на 180° отклонение от соосности в каждой плоскости измерения равно наибольшему из средних арифметических полуразностей результатов измерений, полученных в сечениях I и II при двух оборотах, до и после поворота контрольной оправки.
Отклонение от соосности равно наибольшему из отклонений в каждой плоскости измерения.
Примеры расчета отклонений от соосности приведены в приложении 12б.
14.2.5, 14.2.6. (Введены дополнительно, Изм. № 3).
19.2. Описание мет одов измерения
19.2.1. Метод 1
Средства измерения: отсчетный микроскоп, образцовая штриховая мера.
Схема измерения указана на черт. 56.
Черт. 56
Проведение измерения
На проверяемый рабочий орган 1 параллельно направлению его перемещения устанавливают образцовую штриховую меру 2, а на неподвижном рабочем органе 4 укрепляют микроскоп 3. Пользуясь измерительной системой станка, перемещают проверяемый рабочий орган на заданную длину шагами с остановками через интервалы, не превышающие 0,02 длины перемещения и кратные 1 мм. Если длина проверяемого перемещения больше длины штриховой меры, то измерение проводят с перестановкой этой меры.
С помощью микроскопа по штриховой мере определяют фактическую длину перемещения проверяемого рабочего органа.
Погрешность координат линейного перемещения равна наибольшей разности фактической и номинальной длин перемещений.
19.2.2. Метод 2
Средства измерения: отсчетный микроскоп, образцовая штриховая мера.
Схема измерения указана на черт. 57.
Черт. 57
Проведение измерения
На перпендикулярном к проверяемому рабочему органу 1 кронштейне 2, плечо которого равно наибольшему вылету режущего инструмента, устанавливают микроскоп 3 с отсчетным устройством. На неподвижном узле 4 параллельно направлению перемещения проверяемого рабочего органа устанавливают штриховую меру 5. Микроскоп фокусируют на штриховую меру. Пользуясь измерительной системой станка, рабочий орган с микроскопом перемещают на заданную длину шагами с остановками через интервалы, равные 0,02 всей длины перемещения.
С помощью микроскопа по образцовой штриховой мере определяют фактическую длину перемещения проверяемого рабочего органа.
Погрешность координат линейного перемещения равна наибольшей разности фактической и номинальной длин перемещений.
19.2.3. Метод 3
Средства измерения: лазерный интерферометр, отражатель.
Схема измерения указана на черт. 58.
Черт. 58
Проведение измерения
Лазерный интерферометр 1 на штативе 3 устанавливают на неподвижной части станка так, чтобы его луч был направлен параллельно направлению перемещения проверяемого рабочего органа 4. На перемещаемом рабочем органе закрепляют отражатель 2. Проверяемый рабочий орган перемещают на заданную длину, пользуясь измерительной системой станка. По измерительному прибору лазерного интерферометра определяют фактическую длину перемещения проверяемого рабочего органа.
Погрешность координат линейного перемещения равна наибольшей разности фактической и номинальной длин перемещений.
19.2.1 - 19.2.3. (Измененная редакция, Изм. № 3).
12.2. Описание метода измерения
12.2.1. Метод 1
Средства измерения: коленчатая оправка, прибор для измерения длин, контрольная оправка.
Схема измерения указана на черт. 42.
Черт. 42
Проведение измерения
Коленчатую оправку 1 устанавливают на рабочем органе (шпинделе) 2 вдоль его оси I, принимаемой за базовую. Контрольную оправку 3 устанавливают в центрах или на центрирующей поверхности рабочего органа 4 вдоль его оси II, относительно которой проводится измерение. Измерительный прибор 5 закрепляют на коленчатой оправке на заданном расстоянии l1 от базовой поверхности рабочего органа (шпинделя) 2, так, чтобы его измерительный наконечник касался образующей контрольной оправки в сечении, расположенном на заданном расстоянии l2 от базовой поверхности рабочего органа 4 (положение а). Перемещают рабочий орган (шпиндель) 2 или рабочий орган 4 вдоль оси I и определяют наибольшее показание измерительного прибора. В этом положении рабочий орган (шпиндель) 2 с коленчатой оправкой покачивают вокруг оси I до получения наименьшего показания измерительного прибора, которое фиксируется.
Рабочий орган (шпиндель) 2 или рабочий орган 4 отводят, поворачивают рабочий орган (шпиндель) 2 вместе с коленчатой оправкой на 180°, после чего рабочий орган (шпиндель) 2 или рабочий орган 4 возвращают до касания измерительным прибором контрольной оправки в положении а¢. Показание измерительного прибора в положении а¢ определяют также как и в положении а.
Для исключения влияния радиального биения оси II или неточности установки контрольной оправки следует проводить измерение два раза с поворотом рабочего органа вместе с контрольной оправкой на 180° после первого измерения. Если рабочий орган, несущий контрольную оправку не вращается, то оправку перед вторым измерением вынимают и поворачивают на 180° вокруг ее оси. При этом измерения повторяют два раза.
Для исключения радиального биения оси I рабочего органа (шпинделя) измерения следует проводить два раза. Перед вторым измерением коленчатую оправку с измерительным прибором отсоединяют от рабочего органа (шпинделя) и поворачивают на 180° относительно рабочего органа (шпинделя).
Отклонение от пересечения двух осей рабочих органов при измерении без поворота контрольной и коленчатой оправок равно алгебраической полуразности показаний измерительного прибора в положениях а и а¢.
Отклонение от пересечения двух осей рабочих органов при измерении с поворотом контрольной и коленчатой оправок на 180° равно среднему арифметическому всех алгебраических полуразностей показаний измерительного прибора в положениях а и а¢, полученных при измерении до и после поворота контрольной и коленчатой оправок. При этом для каждого положения контрольной и коленчатой оправок определяют алгебраическую полуразность показаний измерительного прибора в положения а и а¢.
Пример расчета отклонений приведен в справочном приложении 21.
Разд. 12. (Измененная редакция, Изм. № 4).
21.2. Описание методов измерени я
21.2.1. Метод 1
Средство измерения - прибор для измерения длин.
Схема измерения указана на черт. 63 и 64.
Черт. 63
Черт. 64
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное положение поочередно во всех зонах измерения в пределах заданной длины перемещения. Стойку с измерительным прибором 2 закрепляют на подвижном рабочем органе так, чтобы измерительный наконечник измерительного прибора касался неподвижной части станка и направление измерения совпадало с направлением перемещения рабочего органа. Измерительный прибор может быть закреплен на неподвижной части станка, в этом случае измерительный наконечник должен касаться подвижного рабочего органа.
Измерение проводят, как указано в п. 21.1.1.
Для каждой зоны измерения определяют фактические значения каждого из наименьших дискретных перемещений и алгебраические разности между фактическими и номинальными значениями наименьших дискретных перемещений. Отклонение от наименьшего номинального дискретного перемещения в зоне измерения равно наибольшей алгебраической разности между фактическими и номинальным значениями наименьших дискретных перемещений. Отклонение от наименьшего номинального дискретного перемещения на всей длине перемещения рабочего органа равно наибольшему из отклонений, полученных в зонах измерений.
Пример расчета отклонения от наименьшего номинального дискретного перемещения приведен в приложении 15.
21.2.2. Метод 2
Средства измерения: образцовая штриховая мера и микроскоп.
Схема измерения указана на черт. 65.
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное положение поочередно во всех зонах измерения в пределах заданной длины перемещения. Штриховую меру 2 с помощью регулируемых опор 3 устанавливают на подвижном рабочем органе параллельно направлению его перемещения в вертикальной и горизонтальной плоскостях. Стойку с микроскопом 4 закрепляют на неподвижной части станка так, чтобы его оптическая ось была перпендикулярна измерительной поверхности штриховой меры. Стойка с микроскопом может быть закреплена на подвижном рабочем органе, а штриховая мера - на неподвижной части станка.
Черт. 65
Измерение проводят, как указано в п. 21.1.1.
Отклонение от наименьшего номинального дискретного перемещения на всей длине перемещения рабочего органа определяют, как указано в п. 21.2.1.
21.2.3. Метод 3
Средства измерения: измерительная линейка, электронный преобразователь.
Схема измерения указана на черт. 66.
Черт. 66
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное положение поочередно во всех зонах измерения в пределах заданной длины перемещения. Измерительную линейку 2 при помощи регулируемых опор 3 устанавливают на подвижном рабочем органе параллельно направлению его перемещения в вертикальной и горизонтальной плоскостях. Электронный преобразователь 4 закрепляют на неподвижной части станка так, чтобы его положение по отношению к измерительной линейке соответствовало требованиям инструкции по его эксплуатации. Измерительная линейка может быть закреплена на неподвижной части станка, а электронный преобразователь - на подвижном рабочем органе.
Измерение проводят, как указано в п. 21.1.1.
Отклонение от наименьшего номинального дискретного перемещения на всей длине перемещения рабочего органа определяют, как указано в п. 21.2.1.
21.2.4. Метод 4
Средства измерения: лазерный интерферометр, оптический отражатель.
Схема измерения указана на черт. 67.
Черт. 67
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное, положение поочередно во всех зонах измерения в пределах заданной длины перемещения. Лазерный интерферометр 2 (или излучатель и интерферометр), установленный на неподвижной части станка, и отражатель 3, установленный на подвижном рабочем органе, выверят согласно инструкции по эксплуатации.
Измерение проводят, как указано в п. 21.1.1.
Отклонение от наименьшего номинального дискретного перемещения на всей длине перемещения рабочего органа определяют, как указано в п. 21.2.1.
21.2.5. Метод 5
Средство измерения - прибор для измерения длин.
Схема измерения указана на черт. 68.
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное положение поочередно во всех зонах измерения в пределах заданной длины углового перемещения.
Стоику с измерительным прибором 2 закрепляют на неподвижной части станка так, чтобы измерительный наконечник измерительного прибора касался упора 3 (или концевой меры длины, расположенной между упором и измерительным наконечником), закрепленного на подвижном рабочем органе, на заданном радиусе измерения r. При этом направление измерения должно совпадать с касательной к направлению перемещения рабочего органа. Стойка с измерительным прибором может быть закреплена на подвижном рабочем органе, а упор - на неподвижной части станка.
Черт. 68
Измерение проводят, как указано в п. 21.1.1.
Отклонение от наименьшего номинального дискретного перемещения на всей длине углового перемещения рабочего органа определяют, как указано в п. 21.2.1.
Пересчет значений отклонений от наименьшего номинального дискретного перемещения, измеренных в единицах длины, вединицы плоского угла проводят по формуле
где Δφ - отклонение, угловые секунды;
Δх - отклонение, мкм;
r - радиус измерения, мм.
21.2.6. Метод 6
Средства измерения: автоколлиматор, плоское зеркало или полигон.
Схема измерения указана на черт. 69.
Черт. 69
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное положение поочередно во всех зонах измерения в пределах заданного угла углового перемещения.
Автоколлиматор 2 устанавливают на неподвижной части станка или вне станка так, чтобы его оптическая ось была направлена на зеркало 3, закрепленное на подвижном рабочем органе. Автоколлиматор настраивают, как указано в инструкции по эксплуатации.
Измерения проводят, как указано в п. 21.1.1.
Отклонение от наименьшего номинального дискретного перемещения на всей величине угла углового перемещения рабочего органа определяют, как указано в п. 21.2.1.
21.2.7. Метод 7
Средство измерения - дискретный угловой измерительный прибор, например фотоэлектрический круговой преобразователь с цифровой индикацией.
Схема измерения указана на черт. 70.
Черт. 70
Проведение измерения
Подвижный рабочий орган 1 устанавливают в исходное положение поочередно во всех зонах измерения в пределах заданного угла углового перемещения. Дискретный угловой измерительный прибор 2 устанавливают на станок, как указано в инструкции по эксплуатации прибора.
Измерения приводят, как указано в п. 21.1.1.
Отклонение от наименьшего номинального дискретного перемещения на всей величине угла углового перемещения рабочего органа определяют, как указано в п. 21.2.1.
26.2. Описание методов измерения
2.2.1. Метод 1
Средства измерения: образцовая деталь, датчик линейных перемещений.
Схема измерения приведена на черт. 79.
Черт. 79
Проведение измерений
Станок настраивается на выполнение взаимосвязанных формообразующих движений рабочих органов станка по программе, приведенной в нормативной документации. На место обрабатываемой детали устанавливается образцовая деталь 1, а на рабочем органе 2 закрепляется датчик 3 так, чтобы его наконечник находился в функциональной точке 4, совмещенной с рабочей поверхностью детали.
При выполнении взаимосвязанных формообразующих движений рабочих органов станка через заданные интервалы определяют значения перемещений измерительного наконечника датчика, которые регистрируются устройством 5.
Погрешность кинематики на заданном интервале определяется наибольшим значением перемещения наконечника датчика. При необходимости учитываются данные паспорта на образцовую деталь.
26.2.2. Метод 2
Средства измерения - кинематомер.
Схема измерения приведена на черт. 80.
Черт. 80
Проведение измерений
Станок настраивается на выполнение взаимосвязанных формообразующих движений рабочих органов станка по заданной программе, приведенной в нормативной документации.
Датчики 1 и 2 кинематомера устанавливаются таким образом, чтобы каждый из них контролировал перемещение соответствующих рабочих органов 3 и 4 станка. При этом соединение датчиков и рабочих органов станка должны быть выполнены таким образом, чтобы исключить или свести к минимуму погрешности измерения, связанные с неточностью монтажа. При выполнении взаимосвязанных формообразующих движений рабочих органов станка первичная информация от датчиков поступает в устройство 5 и регистрируется устройством 6 через заданные интервалы.
Погрешность кинематики на заданном интервале определяют как разность фактических и номинальных значений взаимосвязанных перемещений рабочих органов станка.
Разд. 26. (Введен дополнительно, Изм. № 6).
1. Пример 1
Измерение проводят без поворота поверхности вращения проверяемого, рабочего органа или контрольной оправки
| Плоскость измерения | Положение измерительного прибора | Показание измерительного прибора, мкм, при | Среднее арифметическое показаний измерительного прибора при двух оборотах, мкм | Полуразность средних арифметических показаний измерительного прибора при двух оборотах и в двух его положениях, мкм | |
| первом обороте рабочего органа | втором обороте рабочего органа | ||||
| а-а' | а | 0 | 2 | 1 |
|
| а' | 4 | 6 | 5 | ||
| б-б' | б | 3 | 3 | 3 |
|
| б' | 18 | 20 | 19 | ||
Отклонение от концентричности осей рабочих органов; в плоскости а-а' будет равно 2 мкм; в плоскости б-б' - 8 мкм.
Отклонение от концентричности осей рабочих органов, будет равно 8 мкм.
2. Пример 2
Измерение проводят с поворотом поверхности вращения проверяемого рабочего органа или контрольной оправки на 180°.
| Плоскость измерения | Положение проверяемой поверхности | Положение измерительного прибора | Показание измерительного прибора, мкм, при | Среднее арифметическое показаний измерительного прибора при двух оборотах, мкм | Полуразность средних арифметических показаний измерительного прибора при двух оборотах и в двух его положениях, мкм | Среднее арифметическое значение полуразности в соответствующей плоскости при двух положениях проверяемой поверхности, мкм | |
| первом обороте рабочего органа | втором обороте рабочего органа | ||||||
| а-а' | Исходное | а | 0 | 2 | 1 |
|
|
| а' | 4 | 6 | 5 | ||||
| После поворота на 180° | а | 38 | 36 | 37 |
| ||
| а' | 8 | 6 | 7 | ||||
| б-б' | Исходное | б | 3 | 3 | 3 |
|
|
| б' | 18 | 20 | 19 | ||||
| После поворота на 180° | б | 6 | 8 | 7 |
| ||
| б' | 52 | 50 | 51 | ||||
Отклонение от концентричности осей рабочих органов: в плоскости а-а' будет равно 6,5 мкм; в плоскости б-б' - 15 мкм.
Отклонение от концентричности осей рабочих органов будет равно 15 мкм.
1. Пример 1
Измерение проводят в двух поперечных сечениях I и II контрольной оправки без поворота контрольной оправки.
| Плоскость измерения | Сечение измерения | Положение измерительного прибора | Показание измерительного прибора, мкм, при | Среднее арифметическое показаний измерительного прибора при двух оборотах, мкм | Полуразность средних арифметических показаний измерительного прибора при двух оборотах и в двух его положениях, мкм | |
| первом обороте рабочего органа | втором обороте рабочего органа | |||||
| а-а' | I | а | 17 | 19 | 18 |
|
| а' | 6 | 6 | 6 | |||
| II | а | 40 | 44 | 42 |
| |
| а' | 11 | 9 | 10 | |||
| б-б' | I | б | 34 | 30 | 32 |
|
| б' | 11 | 9 | 10 | |||
| II | б | 93 | 87 | 90 |
| |
| б' | 4 | 4 | 4 | |||
Отклонение от соосности осей рабочих органов: в плоскости а-а' будет равно 16 мкм; в плоскости б-б' - 43 мкм.
Отклонение от соосности осей рабочих органов будет равно 43 мкм.
2. Пример 2
Измерение проводят в двух поперечных сечениях I и II контрольной оправки с поворотом контрольной оправки на 180°.
| Плоскость измерения | Сечение измерения | Положение контрольной оправки | Положение измерительного прибора | Показание измерительного прибора, мкм, при | Среднее арифметическое показаний измерительного прибора при двух оборотах, мкм | Полуразность средних арифметических показаний измерительного прибора при двух его положениях, мкм | Среднее арифметическое значение полуразности в соответствующих сечениях при двух положениях оправки, мкм | |
| первом обороте рабочего органа | втором обороте рабочего органа | |||||||
| а-а' | I | Исходное | а | 17 | 19 | 18 |
|
|
| а' | 6 | 6 | 6 | |||||
| После поворота на 180° | а | 22 | 20 | 21 |
| |||
| а' | 6 | 4 | 5 | |||||
| II | Исходное | а | 40 | 44 | 42 |
|
| |
| а' | 11 | 9 | 10 | |||||
| После поворота на 180° | а | 40 | 36 | 38 |
| |||
| а' | 13 | 15 | 14 | |||||
| б-б' | I | Исходное | б | 34 | 30 | 32 |
|
|
| б' | 11 | 9 | 10 | |||||
| После поворота на 180° | б | 29 | 27 | 28 |
| |||
| б' | 12 | 8 | 10 | |||||
| II | Исходное | б | 93 | 87 | 90 |
|
| |
| б' | 4 | 4 | 4 | |||||
| После поворота на 180° | б | 85 | 95 | 90 |
| |||
| б' | 15 | 17 | 16 | |||||
Отклонение от соосности осей рабочих органов: в плоскости а-а' будет равно 14 мкм; в плоскости б-б' - 40 мкм.
Отклонение от соосности осей рабочих органов будет равно 40 мкм.
1. Пример 1
Измерение проводят в двух поперечных сечениях I и II контрольной оправки с поворотом контрольной оправки на 180° вокруг ее оси.
| Сечение измерения | Положение контрольной оправки | Показание измерительного прибора, мкм | Среднее арифметическое показаний измерительного прибора, мкм |
| I | Исходное | 8 | 11 |
| После поворота на 180° | 14 | ||
| II | Исходное | 18 | 22 |
| После поворота на 180° | 26 |
Отклонение от одновысотности осей рабочих органов будет равно 22 - 11 = 11 мкм.
2. Пример 2
Измерение проводят с переменой положения концов контрольной оправки (поворотом в плоскости, параллельной базовой, на 180°) в двух поперечных сечениях I и II контрольной оправки с поворотом контрольной оправки на 180° вокруг ее оси.
| Положение концов контрольной оправки | Сечение измерения | Положение контрольной оправки | Показание измерительного прибора, мкм | Среднее арифметическое показаний измерительного прибора, мкм | Разность средних арифметических показаний измерительного прибора, мкм |
| Исходное | I | Исходное | 8 | 11 | 11 |
| После поворота на 180° | 14 | ||||
| II | Исходное | 18 | 22 | ||
| После поворота на 180° | 26 | ||||
| Измененное (после поворота контрольной оправки на 180° в плоскости, параллельной базовой плоскости) | I | Исходное | 3 | 6 | 29 |
| После поворота на 180° | 5 | ||||
| II | Исходное | 32 | 33 | ||
| После поворота на 180° | 34 |
Отклонение от одновысотности осей рабочих органов будет равно
1. Пример 1
Измерение проводилось в двух сечениях измерительной поверхности плоского поверочного угольника I и II, расположенных на расстоянии 300 мм друг от друга с поворотом поверочной линейки и рабочего органа вместе с контрольной оправкой на 180°.
| Положение поверочной линейки | Положение рабочего органа | Показания измерительного прибора, мкм, в сечениях | |
| I | II | ||
| Исходное | Исходное | 12 | 8 |
| После поворота на 180° | 16 | 10 | |
| После поворота на 180° | Исходное | 18 | 12 |
| После поворота на 180° | 24 | 14 | |
Среднее арифметическое показаний измерительного прибора:
в сечении I:
в сечении II:
Отклонение от перпендикулярности оси вращения рабочего органа относительно плоскости равно 17,5 - 11 = 6,5 мкм.
2. Пример 2
Измерение проводилось в двух сечениях измерительной поверхности плоского поверочного угольника I и II, расположенных на расстоянии 300 мм друг от друга с поворотом поверочной линейки на 180° и контрольной оправки, отсоединенной от рабочего органа, последовательно на 90°.
| Положение поверочной линейки | Положение контрольной оправки | Показания измерительного прибора, мкм, в сечениях | |
| I | II | ||
| Исходное | Исходное | 10 | 4 |
| После поворота на 90° | 12 | 6 | |
| После поворота на 180° | 14 | 8 | |
| После поворота на 270° | 16 | 10 | |
| После поворота на 180° | Исходное | 18 | 12 |
| После поворота на 90° | 20 | 14 | |
| После поворота на 180° | 22 | 16 | |
| После поворота на 270° | 24 | 18 | |
Среднее арифметическое показаний измерительного прибора:
в сечении I:
в сечении II:
Отклонение от перпендикулярности оси вращения рабочего органа относительно плоскости равно 17 - 11 = 6 мкм.
26.2. Описание методов измерения
2.2.1. Метод 1
Средства измерения: образцовая деталь, датчик линейных перемещений.
Схема измерения приведена на черт. 79.
Черт. 79
Проведение измерений
Станок настраивается на выполнение взаимосвязанных формообразующих движений рабочих органов станка по программе, приведенной в нормативной документации. На место обрабатываемой детали устанавливается образцовая деталь 1, а на рабочем органе 2 закрепляется датчик 3 так, чтобы его наконечник находился в функциональной точке 4, совмещенной с рабочей поверхностью детали.
При выполнении взаимосвязанных формообразующих движений рабочих органов станка через заданные интервалы определяют значения перемещений измерительного наконечника датчика, которые регистрируются устройством 5.
Погрешность кинематики на заданном интервале определяется наибольшим значением перемещения наконечника датчика. При необходимости учитываются данные паспорта на образцовую деталь.
26.2.2. Метод 2
Средства измерения - кинематомер.
Схема измерения приведена на черт. 80.
Черт. 80
Проведение измерений
Станок настраивается на выполнение взаимосвязанных формообразующих движений рабочих органов станка по заданной программе, приведенной в нормативной документации.
Датчики 1 и 2 кинематомера устанавливаются таким образом, чтобы каждый из них контролировал перемещение соответствующих рабочих органов 3 и 4 станка. При этом соединение датчиков и рабочих органов станка должны быть выполнены таким образом, чтобы исключить или свести к минимуму погрешности измерения, связанные с неточностью монтажа. При выполнении взаимосвязанных формообразующих движений рабочих органов станка первичная информация от датчиков поступает в устройство 5 и регистрируется устройством 6 через заданные интервалы.
Погрешность кинематики на заданном интервале определяют как разность фактических и номинальных значений взаимосвязанных перемещений рабочих органов станка».
Приложение 9 дополнить абзацами:
«К разд. 26
3.10 описание показателя качества услуги: Однозначное определение свойства услуги, которое этот параметр или показатель характеризует.
5.6.2.3 Описание проведения оценки с использованием метода . Данный метод применяется после того, как экспертная группа построила ранжированный по предпочтительности список заявок на участие в конкурсе.
Среди первых трех заявок в упорядоченном списке победитель выбирается по решению Конкурсной комиссии.
2.3 описание продукта (product description): Документ, определяющий свойства пакета программ, основным назначением которого является оказание помощи потенциальным покупателям в оценке пригодности для них данного продукта до его приобретения.
Примечание - Данный термин является более конкретным, чем термин «описание системы» по ИСО/МЭК 2382-20 [12]. Назначением описания продукта является включение в него «информации на упаковке» по ГОСТ Р ИСО 9127 [13]. Описание продукта не является техническим заданием (или техническими условиями), оно имеет другое назначение.
описание продукции: Набор признаков, параметров, показателей и требований, характеризующих продукцию, установленных в соответствующих документах;
3.1.1 описание пространственных отношений: Описание взаимных связей пространственных объектов, основанных на их взаимном расположении в принятой системе координат, в виде ссылок описаний одних пространственных объектов на описания других пространственных объектов.
3.2 В настоящем стандарте использованы следующие сокращения:
БПД - базовые пространственные данные;
ГИС - географические информационные системы;
ЕГСК - единые государственные системы координат;
ИПД - инфраструктура пространственных данных;
СК - система координат.
3.5.1.1 описание риска: Структурированное заключение о риске, обычно содержащее описание четырех элементов: источников риска, событий (3.5.1.3), причин и последствий (3.6.1.3).
4.1.2 описание состояния (state description): Описание состояния, помещенное внутри символа состояния и изображенное в виде слов или алфавитно-цифровых символов, определяющих те комбинации отказавших и функционирующих элементов, которые характеризуют это состояние.
6.1 Описание средств испытаний
Учитывая значительную напряженность генерируемого испытательного поля, испытания должны осуществляться в экранированном помещении, с тем чтобы исключить помехи радиосвязи. Кроме того, экранированное помещение позволяет исключить влияние испытательного поля на вспомогательное оборудование, учитывая, что большинство образцов оборудования для сбора, регистрации и отображения результатов измерений восприимчиво к внешнему полю, генерируемому в процессе испытаний. Должны быть приняты меры к фильтрации кондуктивных помех в соединительных кабелях, входящих в экранированное помещение и выходящих из экранированного помещения.
Предпочтительным средством испытаний является экранированное помещение, покрытое радиочастотным поглощающим материалом, имеющее размеры, позволяющие разместить ИТС и обеспечить соответствующее управление напряженностью испытательного поля. Целесообразно применять безэховые камеры или модифицированные полубезэховые камеры. В присоединенных дополнительных экранированных помещениях должно быть размещено оборудование, обеспечивающее генерирование высокочастотных сигналов, проведение измерений и контроль функционирования ИТС (рисунок 2).
Безэховые камеры менее эффективны на низких частотах. В связи с этим особое внимание должно быть уделено обеспечению однородности испытательного поля на низких частотах. Дополнительные рекомендации приведены в приложении В.
13. Описание среды
Environment description
Языковая конструкция, используемая для описания свойств объектов, которые не являются частью программы, но существенны для ее выполнения
3.6 Описание туристской услуги - информация об основных характеристиках туристской услуги и условиях обслуживания.
3.6 описание туристской услуги - информация об основных характеристиках туристской услуги и условиях обслуживания.
5.2 Описание функционирования КТП с приоритетным режимом ГВС
Технические характеристики приведены в приложении Б.
5.2.1 КТП в режиме отопления. Управление отопительным контуром квартиры
Греющий теплоноситель Т11 от домового теплового пункта поступает в КТП, проходит через грязеуловитель б и перераспределяется в зависимости от режима (отопление или приготовление горячей воды) в систему отопления Т12 (по зависимой схеме) или водонагреватель горячего водоснабжения. В режиме отопления, пройдя отопительный контур (ОК) квартиры теплоноситель Т21 также проходит грязеуловитель и через зональный клапан 5, регулирующий подачу теплоносителя на отопление, поступает в третий ход пропорционального регулятора-распределителя расхода 2, после которого проходит прибор учета тепловой энергии (если установлен) 8 и возвращается в обратный трубопровод Т22 системы теплоснабжения здания.
5.2.1.1 Радиаторное отопление
В отопительный контур квартиры подается расход теплоносителя для покрытия тепловых потерь, не более требуемого по расчету. Для ограничения расхода теплоносителя, поступающего в контур отопления, на стадии наладки устанавливается преднастройка на зональном клапане (рисунок 1, позиция 5). Настройка определяется расчетным путем и учитывает дополнительное сопротивление отопительного контура по отношению к контуру ГВС рассматриваемой квартиры для их гидравлического согласования и исключения возникновения шумов в системе отопления. Регулирование температуры в комнатах может осуществляться термостатическими регуляторами, установленными на радиаторах отопления или посредством центрального электронного термостата, установленного в контрольном помещении. Во втором случае сигнал от центрального термостата подается на исполнительный двухпозиционный термоэлектрический привод, устанавливаемый на зональном клапане 5 КТП. При этом осуществляется отопление методом местных пропусков. Применение центрального термостата позволяет вводить индивидуальную программу отопления. Также систему отопления квартиры возможно разделить на контуры с установкой термостатов в каждом помещении квартиры (лучевая разводка СО). От термостата подается сигнал на клапан своей зоны (КТП комплектуется распределителем).
Для организации системы отопления квартиры применимы как кольцевая, так и лучевая схемы разводки.
5.2.1.2 Отопление помещений системой «теплый пол»
Возможно осуществление отопления квартиры системой теплых полов (пониженный температурный график). Для этого в КТП модульно устанавливается смесительный узел с насосом (рисунок 2). Возможны различные варианты управления трехходовым смесителем: термостатическое, электронное трехпозиционное по температуре в помещении или погодозависимое. Подключение контура теплых полов к системе осуществляется по зависимой схеме через встроенную в узел перепускную линию 11.
Рисунок 2 - Схема КТП со смесительным узлом для отопления системой теплых полов:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - перепускная линия (первичный байпас); 12 - трехходовой смеситель; 13 - термостатический привод смесителя; 14 - электрический привод смесителя, 220 В; 15 - циркуляционный насос; 16 - регулируемый байпас; 17 - контроллер; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.1.3 Комбинированное отопление Возможна схема КТП, обеспечивающая сочетание радиаторного отопления и отопления системой «теплый пол» (рисунок 3). Принцип работы описан в 5.2.1.1 и 5.2.1.2.
Рисунок 3 - Схема КТП со смесительным узлом для сочетания радиаторного отопления и системы теплых полов:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.2 КТП в режиме горячего водоснабжения
Включением/отключением режима ГВС в КТП управляет гидравлический регулятор-распределитель расхода пропорционального действия (РМ-регулятор, от нем. Proportional Mengen - «пропорционально расходу»). РМ-регулятор выпускается в двух вариантах исполнения - двухходовой или трехходовой с функцией приоритета ГВС.
В зависимости от типоразмера водонагревателя, установленного в КТП, применяются соответствующие диаграммы для определения параметров теплоносителя для обеспечения нагрева питьевой воды (см. приложение Б). В любом случае в режиме ГВС после водонагревателя КТП обеспечивается низкая температура обратной магистрали Т21 в силу проточного (противоточная схема движения теплоносителя) режима нагрева питьевой воды.
5.2.2.1 Режим горячего водоснабжения (только для КТП с функцией приоритета ГВС). Отопительный период
В режиме отопления теплоноситель Т21 циркулирует через третий ход 4 РМ-регулятора (рисунок 4а).
Рисунок 4 - Схема работы трехходового гидравлического регулятора-распределителя расхода пропорционального действия с функцией приоритета ГВС:
1 - возвратная пружина штока; 2 – импульсная линия давления; 3 - дроссель контура отопления (3-ий ход); 4 - третий ход РМ-регулятора; 5 - шток; 6 - мембрана
При открытии крана прибора разбора горячей воды возникает перепад давлений на мембране 6 РМ-регулятора, перемещающий ее и жестко скрепленный с ней шток 5 из начального положения «контур отопления открыт - контур ГВС закрыт» в положение «контур отопления закрыт - контур ГВС открыт» и производит регулирование подачи теплоносителя в проточный водонагреватель пропорционально расходу поступающей в противоточном режиме питьевой воды В1. При этом весь теплоноситель Т11, поступающий в КТП, направляется в контур ГВС, после которого проходит прибор учета тепла и поступает в обратный трубопровод системы теплоснабжения Т22. С закрытием крана прибора разбора горячей воды через выполненную в корпусе РМ-регулятора импульсную линию 2 перепад давлений на мембране 6 исчезает и возвратная пружина 1 переводит шток в исходное положение - отопление продолжается, контур ГВС перекрыт.
5.2.2.2 Режим горячего водоснабжения. Летний период эксплуатации. Термический мост циркуляции
В схеме теплоснабжения с КТП необходимо обеспечить циркуляцию греющего теплоносителя Т11 в летний период эксплуатации (отсутствие отопительной нагрузки) для обеспечения нагрева горячей воды Т3 в водонагревателе КТП. Для этого в зависимости от принятой схемы разводящих сетей здания (см. пункт 10) требуется сделать следующее.
При схеме 1 пункта 10: в каждом, удаленном более чем на 3 м от распределительной магистрали теплоносителя, КТП устанавливается термический мост циркуляции (регулятор температуры «после себя»), который имеет настроечную шкалу 45-65 °С. (рисунок 5, позиция 11).
При схеме 2 пункта 10: термический мост циркуляции устанавливается в крайних по ходу движения теплоносителя КТП, подключенных к рассматриваемому стояку или устанавливается выносной термический мост циркуляции в крайней по ходу движения теплоносителя точке стояка (например, на техническом этаже) (рисунок 6).
Рисунок 5 - Схема КТП, укомплектованного термическим мостом циркуляции:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термический мост циркуляции; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 6 - Термический мост циркуляции, устанавливаемый на теплоснабжающем стояке:
а - верхний мост циркуляции; б - нижний мост циркуляции; 1 - автоматический воздухоотводчик; 2 - термический мост циркуляции; 3 - сливной кран
При таком решении обеспечивается стабильная температура греющего теплоносителя Т11 перед водонагревателем, достаточная для нагрева расчетного количества питьевой воды до нормативного уровня при отсутствии отопительной нагрузки.
Роль термического моста циркуляции может выполнять RTL-вентиль (return temperature limiter) установленный на радиаторе ванной комнаты (полотенцесушителе) (см. 5.2.5.1).
Режим работы моста циркуляции представлен на рисунке 7. Применение в системе теплоснабжения термического моста циркуляции позволяет снизить потери тепловой энергии за счет отсутствия централизованной системы ГВС и периодической циркуляции теплоносителя Т11 для нагрева питьевой воды в летний период.
Рисунок 7 - Режим работы термического моста циркуляции
5.2.3 Организация контура ГВС при значительной удаленности приборов разбора горячей воды от места установки КТП
Основным критерием для определения максимальной удаленности прибора разбора горячей воды от КТП является внутренний объем соединяющего их трубопровода, который не должен превышать 30 дм3 (3 л). В противном случае время ожидания схода остывшей воды с участка трубопровода оказывается за рамками комфортных для потребителя условий.
Для обеспечения комфортного горячего водоснабжения в квартирах с удаленными точками разбора горячей воды в КТП возможно модульно установить узел циркуляции горячей воды с таймером (рисунок 8) или термостатическим реле (рисунок 9).
Рисунок 8 - Схема КТП с контуром циркуляции ГВС. Регулирование посредством реле времени и термического моста циркуляции контура ГВС:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термический мост циркуляции первичного контураводонагревателя ГВС; 11' - линия циркуляции горячей воды с насосом, ~220 В; 12 - реле времени, ~220 В; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 9 - Схема КТП с контуром циркуляции ГВС. Регулирование посредством термического реле и соленоидного клапана:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - соленоидный клапан, ~220 В; 12 - термостатическое реле; 13 - циркуляционный насос ГВС, ~220 В; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Также для обеспечения комфортных условий по приготовлению горячей воды в летний период эксплуатации системы необходимо учитывать удаленность расположения КТП от распределительной сети здания и при необходимости комплектовать КТП термическим мостом циркуляции (см. 5.2.2.2).
5.2.4 Обеспечение нормативной температуры горячей воды
Диапазон допустимых температур в системе ГВС регламентируется title="Внутренний водопровод и канализация зданий" «Внутренний водопровод и канализация зданий». Нижний предел температуры горячей воды (50 °С) обеспечивается КТП при соответствии параметров системы теплоснабжения полученным расчетным путем и РМ-регулятором пропорционального действия (см. 5.2.2), а также:
- в случае источника теплоснабжения индивидуальная групповая котельная обеспечивается методом качественно-количественного регулирования тепловой нагрузки. «Срезка» отопительной кривой на уровне 70 °С;
- в случае источника теплоснабжения тепловая сеть обеспечивается методом качественного регулирования тепловой нагрузки. «Срезка» отопительной кривой на уровне 70 °С.
При соотношении гидравлических сопротивлений контуров отопления и ГВС КТП (определяются при выполнении гидравлического расчета, см. приложение Г) DРотопление/DРГВС > 1 в контур ГВС подается расход теплоносителя, превышающий требуемый. В этом случае горячая вода будет перегреваться и поэтому требуется комплектовать КТП термостатическим смесителем ГВС (рисунок 10), обеспечивающим защиту от получения ожога.
Рисунок 10 - Схема КТП с термостатическим смесителем ГВС (защита от возможного ожога):
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термостатический смесительный вентиль для горячей воды - защита от ожога; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Также термостатический смеситель ГВС можно устанавливать для обеспечения безопасности потребителя в случае возникновения нерасчетных параметров в системе теплоснабжения (на усмотрение проектировщика) или комплектоваться на стадии эксплуатации при необходимости.
5.2.5 Организация контура радиатора (полотенцесушителя) и контура теплого пола в ванной комнате. Роль термического моста циркуляции
5.2.5.1 При стандартной схеме теплоснабжения в контуре полотенцесушителя циркулирует вода из системы ГВС. В случае применения схемы с КТП в контуре полотенцесушителя циркулирует теплоноситель. При этом контур полотенцесушителя выполняется в виде ответвления от основного контура отопления квартиры. Это организуется в самом модуле КТП (в виде опции, рисунок 11) или путем местной установки RTL-вентиля на обратной линии контура полотенцесушителя при условии отсутствия центрального регулирования зонального клапана или комплектации КТП распределителем с установкой зонального клапана на каждом ответвлении (рисунок 12, позиция 5).
Рисунок 11 - Организация контура полотенцесушителя с установкой RTL-вентиля в модуле КТП:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль (контур полотенцесушителя); СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 12 - Организация контура полотенцесушителя с установкой RTL-вентиля непосредственно на полотенцесушителе:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
При применении регулятора температуры «после себя» он также выполняет роль термического моста циркуляции (см. 5.2.2.2).
При необходимости установки в КТП контура циркуляции ГВС (см. 5.2.3) возможно подключать контур полотенцесушителя на линию циркуляции.
5.2.6 Схема КТП с ограничителем температуры обратной магистрали контура отопления
Температура обратной магистрали в режиме ГВС описана в 5.2.2 и диаграммах приложения Б.
В режиме отопления расчетная температура обратной магистрали Т22 обеспечивается при соблюдении проектных требований, а также в ИТП с помощью контроллера управления. Помимо этого, при необходимости в КТП модульно возможно установить ограничитель температуры обратной магистрали, который функционирует аналогично термическому мосту циркуляции (см. 5.2.2.2), обеспечивая регулирование «местными пропусками» при превышении температуры обратного потока, заданного на самом элементе.
Рисунок 13 - Схема КТП с ограничителем температуры обратной магистрали контура отопления:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.7 Гидравлическая балансировка КТП в системе
Для гидравлической увязки КТП в системе требуется установка балансировочной арматуры. В зависимости от принимаемой схемы и проектного решения балансировочные клапаны (статические и/или автоматические) устанавливаются на стояках, этажных ответвлениях или/и ответвлениях к КТП (см. также пункт 10). При этом функция клапана заключается в поддержании расчетного перепада давления (автоматический клапан) при изменении расхода теплоносителя по причине включения/отключения нагрузки ГВС в рассматриваемом ответвлении (стояке) или поддержании заданного напора (статический клапан) для рассматриваемого ответвления (стояка), что требуется для ограничения расхода и напора теплоносителя в расчетном режиме. Следует выбирать клапан с диапазоном регулирования, обеспечивающим требуемый перепад давления в расчетном режиме совокупной нагрузки отопления и ГВС всех подключенных к ответвлению (стояку) потребителей. Также возможно укомплектовать КТП балансировочной арматурой модульно (рисунок 14). В основном это применяется при удалении КТП от других потребителей или проектах отдельно стоящих индивидуальных домов.
Рисунок 14 - Схема КТП с автоматическим балансировочным клапаном:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - автоматический балансировочный клапан; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Источник: Описание
Описание функционирования КТП с приоритетным режимом ГВС
5.2 Описание функционирования КТП с приоритетным режимом ГВС
Технические характеристики приведены в приложении Б.
5.2.1 КТП в режиме отопления. Управление отопительным контуром квартиры
Греющий теплоноситель Т11 от домового теплового пункта поступает в КТП, проходит через грязеуловитель б и перераспределяется в зависимости от режима (отопление или приготовление горячей воды) в систему отопления Т12 (по зависимой схеме) или водонагреватель горячего водоснабжения. В режиме отопления, пройдя отопительный контур (ОК) квартиры теплоноситель Т21 также проходит грязеуловитель и через зональный клапан 5, регулирующий подачу теплоносителя на отопление, поступает в третий ход пропорционального регулятора-распределителя расхода 2, после которого проходит прибор учета тепловой энергии (если установлен) 8 и возвращается в обратный трубопровод Т22 системы теплоснабжения здания.
5.2.1.1 Радиаторное отопление
В отопительный контур квартиры подается расход теплоносителя для покрытия тепловых потерь, не более требуемого по расчету. Для ограничения расхода теплоносителя, поступающего в контур отопления, на стадии наладки устанавливается преднастройка на зональном клапане (рисунок 1, позиция 5). Настройка определяется расчетным путем и учитывает дополнительное сопротивление отопительного контура по отношению к контуру ГВС рассматриваемой квартиры для их гидравлического согласования и исключения возникновения шумов в системе отопления. Регулирование температуры в комнатах может осуществляться термостатическими регуляторами, установленными на радиаторах отопления или посредством центрального электронного термостата, установленного в контрольном помещении. Во втором случае сигнал от центрального термостата подается на исполнительный двухпозиционный термоэлектрический привод, устанавливаемый на зональном клапане 5 КТП. При этом осуществляется отопление методом местных пропусков. Применение центрального термостата позволяет вводить индивидуальную программу отопления. Также систему отопления квартиры возможно разделить на контуры с установкой термостатов в каждом помещении квартиры (лучевая разводка СО). От термостата подается сигнал на клапан своей зоны (КТП комплектуется распределителем).
Для организации системы отопления квартиры применимы как кольцевая, так и лучевая схемы разводки.
5.2.1.2 Отопление помещений системой «теплый пол»
Возможно осуществление отопления квартиры системой теплых полов (пониженный температурный график). Для этого в КТП модульно устанавливается смесительный узел с насосом (рисунок 2). Возможны различные варианты управления трехходовым смесителем: термостатическое, электронное трехпозиционное по температуре в помещении или погодозависимое. Подключение контура теплых полов к системе осуществляется по зависимой схеме через встроенную в узел перепускную линию 11.
Рисунок 2 - Схема КТП со смесительным узлом для отопления системой теплых полов:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - перепускная линия (первичный байпас); 12 - трехходовой смеситель; 13 - термостатический привод смесителя; 14 - электрический привод смесителя, 220 В; 15 - циркуляционный насос; 16 - регулируемый байпас; 17 - контроллер; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.1.3 Комбинированное отопление Возможна схема КТП, обеспечивающая сочетание радиаторного отопления и отопления системой «теплый пол» (рисунок 3). Принцип работы описан в 5.2.1.1 и 5.2.1.2.
Рисунок 3 - Схема КТП со смесительным узлом для сочетания радиаторного отопления и системы теплых полов:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.2 КТП в режиме горячего водоснабжения
Включением/отключением режима ГВС в КТП управляет гидравлический регулятор-распределитель расхода пропорционального действия (РМ-регулятор, от нем. Proportional Mengen - «пропорционально расходу»). РМ-регулятор выпускается в двух вариантах исполнения - двухходовой или трехходовой с функцией приоритета ГВС.
В зависимости от типоразмера водонагревателя, установленного в КТП, применяются соответствующие диаграммы для определения параметров теплоносителя для обеспечения нагрева питьевой воды (см. приложение Б). В любом случае в режиме ГВС после водонагревателя КТП обеспечивается низкая температура обратной магистрали Т21 в силу проточного (противоточная схема движения теплоносителя) режима нагрева питьевой воды.
5.2.2.1 Режим горячего водоснабжения (только для КТП с функцией приоритета ГВС). Отопительный период
В режиме отопления теплоноситель Т21 циркулирует через третий ход 4 РМ-регулятора (рисунок 4а).
Рисунок 4 - Схема работы трехходового гидравлического регулятора-распределителя расхода пропорционального действия с функцией приоритета ГВС:
1 - возвратная пружина штока; 2 – импульсная линия давления; 3 - дроссель контура отопления (3-ий ход); 4 - третий ход РМ-регулятора; 5 - шток; 6 - мембрана
При открытии крана прибора разбора горячей воды возникает перепад давлений на мембране 6 РМ-регулятора, перемещающий ее и жестко скрепленный с ней шток 5 из начального положения «контур отопления открыт - контур ГВС закрыт» в положение «контур отопления закрыт - контур ГВС открыт» и производит регулирование подачи теплоносителя в проточный водонагреватель пропорционально расходу поступающей в противоточном режиме питьевой воды В1. При этом весь теплоноситель Т11, поступающий в КТП, направляется в контур ГВС, после которого проходит прибор учета тепла и поступает в обратный трубопровод системы теплоснабжения Т22. С закрытием крана прибора разбора горячей воды через выполненную в корпусе РМ-регулятора импульсную линию 2 перепад давлений на мембране 6 исчезает и возвратная пружина 1 переводит шток в исходное положение - отопление продолжается, контур ГВС перекрыт.
5.2.2.2 Режим горячего водоснабжения. Летний период эксплуатации. Термический мост циркуляции
В схеме теплоснабжения с КТП необходимо обеспечить циркуляцию греющего теплоносителя Т11 в летний период эксплуатации (отсутствие отопительной нагрузки) для обеспечения нагрева горячей воды Т3 в водонагревателе КТП. Для этого в зависимости от принятой схемы разводящих сетей здания (см. пункт 10) требуется сделать следующее.
При схеме 1 пункта 10: в каждом, удаленном более чем на 3 м от распределительной магистрали теплоносителя, КТП устанавливается термический мост циркуляции (регулятор температуры «после себя»), который имеет настроечную шкалу 45-65 °С. (рисунок 5, позиция 11).
При схеме 2 пункта 10: термический мост циркуляции устанавливается в крайних по ходу движения теплоносителя КТП, подключенных к рассматриваемому стояку или устанавливается выносной термический мост циркуляции в крайней по ходу движения теплоносителя точке стояка (например, на техническом этаже) (рисунок 6).
Рисунок 5 - Схема КТП, укомплектованного термическим мостом циркуляции:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термический мост циркуляции; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 6 - Термический мост циркуляции, устанавливаемый на теплоснабжающем стояке:
а - верхний мост циркуляции; б - нижний мост циркуляции; 1 - автоматический воздухоотводчик; 2 - термический мост циркуляции; 3 - сливной кран
При таком решении обеспечивается стабильная температура греющего теплоносителя Т11 перед водонагревателем, достаточная для нагрева расчетного количества питьевой воды до нормативного уровня при отсутствии отопительной нагрузки.
Роль термического моста циркуляции может выполнять RTL-вентиль (return temperature limiter) установленный на радиаторе ванной комнаты (полотенцесушителе) (см. 5.2.5.1).
Режим работы моста циркуляции представлен на рисунке 7. Применение в системе теплоснабжения термического моста циркуляции позволяет снизить потери тепловой энергии за счет отсутствия централизованной системы ГВС и периодической циркуляции теплоносителя Т11 для нагрева питьевой воды в летний период.
Рисунок 7 - Режим работы термического моста циркуляции
5.2.3 Организация контура ГВС при значительной удаленности приборов разбора горячей воды от места установки КТП
Основным критерием для определения максимальной удаленности прибора разбора горячей воды от КТП является внутренний объем соединяющего их трубопровода, который не должен превышать 30 дм3 (3 л). В противном случае время ожидания схода остывшей воды с участка трубопровода оказывается за рамками комфортных для потребителя условий.
Для обеспечения комфортного горячего водоснабжения в квартирах с удаленными точками разбора горячей воды в КТП возможно модульно установить узел циркуляции горячей воды с таймером (рисунок 8) или термостатическим реле (рисунок 9).
Рисунок 8 - Схема КТП с контуром циркуляции ГВС. Регулирование посредством реле времени и термического моста циркуляции контура ГВС:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термический мост циркуляции первичного контураводонагревателя ГВС; 11' - линия циркуляции горячей воды с насосом, ~220 В; 12 - реле времени, ~220 В; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 9 - Схема КТП с контуром циркуляции ГВС. Регулирование посредством термического реле и соленоидного клапана:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - соленоидный клапан, ~220 В; 12 - термостатическое реле; 13 - циркуляционный насос ГВС, ~220 В; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Также для обеспечения комфортных условий по приготовлению горячей воды в летний период эксплуатации системы необходимо учитывать удаленность расположения КТП от распределительной сети здания и при необходимости комплектовать КТП термическим мостом циркуляции (см. 5.2.2.2).
5.2.4 Обеспечение нормативной температуры горячей воды
Диапазон допустимых температур в системе ГВС регламентируется title="Внутренний водопровод и канализация зданий" «Внутренний водопровод и канализация зданий». Нижний предел температуры горячей воды (50 °С) обеспечивается КТП при соответствии параметров системы теплоснабжения полученным расчетным путем и РМ-регулятором пропорционального действия (см. 5.2.2), а также:
- в случае источника теплоснабжения индивидуальная групповая котельная обеспечивается методом качественно-количественного регулирования тепловой нагрузки. «Срезка» отопительной кривой на уровне 70 °С;
- в случае источника теплоснабжения тепловая сеть обеспечивается методом качественного регулирования тепловой нагрузки. «Срезка» отопительной кривой на уровне 70 °С.
При соотношении гидравлических сопротивлений контуров отопления и ГВС КТП (определяются при выполнении гидравлического расчета, см. приложение Г) DРотопление/DРГВС > 1 в контур ГВС подается расход теплоносителя, превышающий требуемый. В этом случае горячая вода будет перегреваться и поэтому требуется комплектовать КТП термостатическим смесителем ГВС (рисунок 10), обеспечивающим защиту от получения ожога.
Рисунок 10 - Схема КТП с термостатическим смесителем ГВС (защита от возможного ожога):
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - термостатический смесительный вентиль для горячей воды - защита от ожога; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Также термостатический смеситель ГВС можно устанавливать для обеспечения безопасности потребителя в случае возникновения нерасчетных параметров в системе теплоснабжения (на усмотрение проектировщика) или комплектоваться на стадии эксплуатации при необходимости.
5.2.5 Организация контура радиатора (полотенцесушителя) и контура теплого пола в ванной комнате. Роль термического моста циркуляции
5.2.5.1 При стандартной схеме теплоснабжения в контуре полотенцесушителя циркулирует вода из системы ГВС. В случае применения схемы с КТП в контуре полотенцесушителя циркулирует теплоноситель. При этом контур полотенцесушителя выполняется в виде ответвления от основного контура отопления квартиры. Это организуется в самом модуле КТП (в виде опции, рисунок 11) или путем местной установки RTL-вентиля на обратной линии контура полотенцесушителя при условии отсутствия центрального регулирования зонального клапана или комплектации КТП распределителем с установкой зонального клапана на каждом ответвлении (рисунок 12, позиция 5).
Рисунок 11 - Организация контура полотенцесушителя с установкой RTL-вентиля в модуле КТП:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль (контур полотенцесушителя); СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Рисунок 12 - Организация контура полотенцесушителя с установкой RTL-вентиля непосредственно на полотенцесушителе:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
При применении регулятора температуры «после себя» он также выполняет роль термического моста циркуляции (см. 5.2.2.2).
При необходимости установки в КТП контура циркуляции ГВС (см. 5.2.3) возможно подключать контур полотенцесушителя на линию циркуляции.
5.2.6 Схема КТП с ограничителем температуры обратной магистрали контура отопления
Температура обратной магистрали в режиме ГВС описана в 5.2.2 и диаграммах приложения Б.
В режиме отопления расчетная температура обратной магистрали Т22 обеспечивается при соблюдении проектных требований, а также в ИТП с помощью контроллера управления. Помимо этого, при необходимости в КТП модульно возможно установить ограничитель температуры обратной магистрали, который функционирует аналогично термическому мосту циркуляции (см. 5.2.2.2), обеспечивая регулирование «местными пропусками» при превышении температуры обратного потока, заданного на самом элементе.
Рисунок 13 - Схема КТП с ограничителем температуры обратной магистрали контура отопления:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - RTL-вентиль; СТС – система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
5.2.7 Гидравлическая балансировка КТП в системе
Для гидравлической увязки КТП в системе требуется установка балансировочной арматуры. В зависимости от принимаемой схемы и проектного решения балансировочные клапаны (статические и/или автоматические) устанавливаются на стояках, этажных ответвлениях или/и ответвлениях к КТП (см. также пункт 10). При этом функция клапана заключается в поддержании расчетного перепада давления (автоматический клапан) при изменении расхода теплоносителя по причине включения/отключения нагрузки ГВС в рассматриваемом ответвлении (стояке) или поддержании заданного напора (статический клапан) для рассматриваемого ответвления (стояка), что требуется для ограничения расхода и напора теплоносителя в расчетном режиме. Следует выбирать клапан с диапазоном регулирования, обеспечивающим требуемый перепад давления в расчетном режиме совокупной нагрузки отопления и ГВС всех подключенных к ответвлению (стояку) потребителей. Также возможно укомплектовать КТП балансировочной арматурой модульно (рисунок 14). В основном это применяется при удалении КТП от других потребителей или проектах отдельно стоящих индивидуальных домов.
Рисунок 14 - Схема КТП с автоматическим балансировочным клапаном:
1 - пластинчатый теплообменник ГВС; 2 - трехходовой РМ-регулятор; 3 - дроссельная шайба горячего водоснабжения 12,15,17 л/мин; 4 - воздухоотводчик (кран Маевского); 5 - зональный вентиль; 6 - грязеуловитель с шаровым краном для промывки, наполнения и слива (опция); 7 - разъем для счетчика холодной воды, 110 мм; 8 - разъем для счетчика тепла, 110 мм; 9 - муфта для погружной гильзы теплосчетчика; 10 - запорный шаровой кран; 11 - автоматический балансировочный клапан; СТС - система теплоснабжения; ОК - отопительный контур; ХВС/ГВС - системы холодного и горячего водоснабжения
Источник: Описание функционирования КТП с приоритетным режимом ГВС














/6391681-noquantity-150x150.jpg)



/bryki/bekas-bereza-150x150.jpg)
/bryki/bekas-tigerRS-150x150.jpg)


/kurtki3/Bekas-berezaRS-150x150.jpg)



/golova2/kosyna-tobacco-150x150.jpg)








/Shevroni/2pantera-150x150.jpg)

/golova2/kepiBDU-cifra-150x150.jpg)
/Nakleiki/specnazVDV-150x150.jpg)








/bryki/bekas-black-150x150.jpg)
/r2fw-white-150x150.jpg)



/r2f-white-150x150.jpg)
/kurtki2/MCS200-150x150.jpg)


/akk(T-shirt2)/oxpaHaBlack-150x150.jpg)



