Chapter 5.  Electromagnetic Induction

Topicsto cover:
1) EMF in a Conductor Moving in a 2) Faraday'sLaw
Satic Magnetic Field 3) Maxwell's Equations

The Motion of a Conductor through a Magnetic Field

Consider a conductor moving through a steady magnetic field B with velocity v as
shown below in diagram (a). The Lorentz force component F, = Q(v" B) will cause
free charges within the conductor to move; positive to the top, negative to the bottom.
This generates an electric field E internal to the conductor. The force due to this field
F. = QE will oppose the free charge movement. Equilibrium resultswhen F +F, =0,
and the charges stop moving. An electric potential difference V exists between the top
and the bottom of the conductor. This can be written as

V--E-I--E-I—i-l—(v’B)-l
- =5 1=g e

where | isavector pointing from - b to +a with magnitude [; refer to the figure.
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(@ (b)
If this moving conductor was connected to an external circuit as shown in diagram (b)
with total resistance R then a current | would be expected to flow, which can be
calculated by the Ohm's law:
| =V/R=(v" B)-I/R
Energy would be dissipated as heat at the rate of
P=12R={(v" B)- I}?/R (W)

When the current flows in the conductor, the force on the conductor carrying current | is

F=qQue B)=1t&1 B%=1"B
et a
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as Q=It and v&=I/t. (Note that v¢is the velocity of the moving charges and not the
velocity of the conductor). It can be seen that this force is in the direction opposite to
the movement of the conductor.

We have seen that magnetic as well as electrostatic forces can act on charges within a
conducting circuit and that it is the former which is directly responsible for producing a
potential difference between terminals a and b. The work done in taking a charge from
ato b viaRiswork done by electrostatic forces and is equal to the potential difference
between a and b. Thisis not true for the return path from b to a along the conducting
rod. Here the force exerted on a charge by the electrostatic field is balanced by the
magnetic force resulting from the motion of the charge through the magnetic field.
Thus no work is done when the charge is taken from b to a along the conducting rod.
So, when a charge is taken from a to b via R and back to a along the conducting rod a
net quantity of work is done, which equals the potential difference between a and b. It
is no longer true, as in the purely electrostatic case to say that the total potential change
around a closed path is zero. This could be expected in other situations where forces
other than purely electrostatic forces act. (Consider a battery where chemical energy
causes the flow of current).

For a complete circuit including the conducting rod (or battery) it is useful to define an
electromotive force (emf) e. The unit for eisvolt (V). (Be careful: the symbol eis aso
used for the charge carried by an electron.) We can define e as the work done in
moving a charge around the external circuit once. That is

e=(v" B)- |

(In the previous figure, |, v and B are all at right angles and thus (v” B) isin the same
direction asl. Therefore e=vBl .)

Example:

Calculate the open circuit voltage between the brushes on a Faraday's disc as shown
schematically in the diagram below.

N

\
N\
N
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Solution:

Choose a small line segment of length dr at position r (rier£r,)from the center of the
disc between the brushes. The induced emf in this elemental length is then

de = Bvdr = Bw,rdr

where v=rw;. Therefore,
r2 r2 2 2 2
e= (yle= OBw,rdr =w,B—

r rn

Faraday'sLaw

When the magnetic flux linking a circuit changes, an enf is induced in the circuit.
Faraday's Law states that the emf equals the rate of change of flux. Mathematically,

df

e:-a

where the minus sign indicates the direction of the induced emf is such that any current
produced by it tends to oppose the change in flux, which is known asthe LenZ's Law.

More generally, when there are N circuits or N turns, the Faraday's law can be written as

di

e:-a

where| =Nf isthe total flux linkage.

Although the emf by Faraday’s law is expressed in aform different from that induced in
amoving rod, these two formulas are essentially the same. Consider the conducting rod
moving in the magnetic field with velocity v. Previously we defined

e=(v' B)- I
and as previoudy stated, sincel, v and B are at right angles we can write
e=VviB

Noting that lvdt is the area swept out by the rod in time interval dt and that IvBdt is the
decrease in the flux linked with the circuit during dt, we obtain

- df =IvBdt
and therefore
df

e:-a
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Example:

Consider a small rectangular coil of N turns wound on a non-magnetic former in a
magnetic field of density B (perpendicular to the paper) as shown below.

y dx B
X 3K dA=bdx
7~
B
O] @ ® @
b
O] @ ® O
N/
K N
N a2 a2
Xe
o X

(a) Calculate the flux linking the coil if B = Bsinax, where a is a constant.
Solution:

Here we consider a strip dA=bdx, and therefore df =B dA. The linking flux is then
determined from

X+
f = OBsinax>bdx
:-—[cosax] 2
2
= B—beosa % +29_ cosa & aql
B éc & " 25 &" 2@”
2b

——smg——Bsmax
(ascogu+Vv) - cofu- v) = - 2sinusinv)
and for N turnsthe flux linking the coil is

2Nb
| = —Sl 8——Bsmax

(b) Calculate the emf induced in the coil when it moves in the x-direction with velocity
V.

Solution:

Consider

Page 5-4




48531 EMS— Chapter 5. Electromagnetic Induction

oo A ddx,
TTodt dx, dt
and
_dx,
ot
Now

;j)l( ZZN ] ?2 O cos(ax )a

_ oo 5122208
=2bN sing > faB cos(axc)
and therefore
. a@ag
e=-2bNsn 75 vcos(ax )
(c) Determine the value of a which maximizes the emf determined in (b).

Solution:

From the above expression, we know the magnitude of emf is
s _ N nd®204
E =-2bN sing > ‘-Z‘BV

When sin(aa/z):il or aa=(2n- Yp, (~=1,2,.....), it reaches the maximum, and

therefore,
a=b/7 (or an odd multiple)

(d) Calculate the induced emf if B=Bsin(wt- ax) and the coil moves in the x-
direction with velocity v, (w constant). Hence determine when v =w/a .

Solution:
As B = Bsin(wt - ax) , from (a) we have

I —Zb—N 'nga—a—Bsn(wt ax)

2bN
=— n%——Bsm(Wt awvt)

and therefore

=-——39n 7QBCOS(Wt ax )(W av)
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= 26N - vOinB 298 cosut - ax,)
ea g e2g

Thus, when v =w/a , the emf e=0.

EMF Expressed in Terms of Inductances

When a current | flows in a stationary circuit, a magnetic field will be established and
the flux density at all points will be proportional to 1. And so, for the flux f linked with
the circuit itself or the flux linkage | , we can write

| =LI

where the proportionality constant is the self inductance with the unit of henry (H). If
the current in the circuit varies with time, an emf will be induced:

S oodt - dt

with the minus sign signifying that the emf tends to oppose the changein current.

The situation depicted in the above figure represents a common situation where a
generator (G) causes a current i; to flow in circuit 1 and a magnetic field is set up.
Some of the magnetic flux link with circuit 2. At every point the flux density B will be
proportional to i; and so the total flux linkage with circuit 2 will also be proportional to
I1. Thusthe flux linkage of circuit 2 due to the current in circuit 1, | 24, is

l 21 = I—21i1
where L, isthe mutual inductance between circuits 1 and 2.
It follows that the emf induced in circuit 2 can be written as

3 d|21_ di,
QT T T g

Note here that the negative sign in this equation has no meaning unless we have a
consistent convention for the positive directions of current and for the positive
directions for winding the coils. In circumstances where the direction of the induced
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emf isimportant it is a common practice to mark the corresponding ends of the windings
by the dot convention.

Ideal Transformer

A transformer is an alternating current device that transforms voltages, currents and
impedances. For idea transformers, we assume that the permeability of the core
approaches infinity, and that all power losses in the windings and the core are ignored.
Thus, by the Ampere’ s law, we have

or
L N,
i2 - Nl
Since the power losses are ignored, the input power P _f
must be equal to the output power: i, i,
o ) q o)
V1i1:V2i2 VlT Nl( j Z LN T\é
or o ——©
Vb N N —
V2 i1 N2
An ideal transformer
For resistance transform, we can write
v1 &N, o v, _ N, o R i i
2
gN @i, 8N ) —
For impedance, we have R=w| N N |V DR_
z &N, 6 z, ° °
8N 2

Maxwell’s Equations

The following table summarizes the governing equations (known as the Maxwell's
equations) of electromagnetic fields, where the differential forms can be obtained by
applying the Stokes Theorem

R A)- ds=gp - d
S C

where C is the contour bounding the surface S, and the Gauss' theorem
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ON- Adv=9A - ds
\%

S

where S is the closed surface bounding the volume V, to the corresponding integral
forms of the Maxwell's equations.

Integral Form Differential Form Significance
S\ﬁ'dlz'% N :'111_? Faraday's Law
g‘j—|-dI:I+9‘|]"—[t)-ds N’H:J+1]"—lt) Ampere's Law
P ds=Q N-D=r Gauss Law
s
g‘fr ds=0 N-B=0 No isolated magnetic

charge

Exercises

1. Theuniform magnetic field of density B tedais perpendicular to the plane of the

disc.
< e carbon
brushes

N
Yrs
B (stationary field)

circular metal disc

(i) Make asketch showing the magnetic forces on the free electronsin the disc
and the electrostatic forces on the free electrons.

(if) Derive an expression for the potential difference e between the carbon brushes
on the outside rim and on the surface of the shaft.

(Answer: %wBrj )

2. Derive an expression for the current induced in the ring shown in the diagram
below, neglecting the flux produced by the current itself.
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Area: Al4 Area: A

Rsistivity:

3. Derive an expression for the emf in coil 2 in the diagram below and sketch the emf
vs. time when
(@ i;=l; aconstant, and (b) i1=lpsinwt,

4. Inthe diagram below the poles are shaped to give a sinusoidal flux density
B=Bcosq at the rotor surface. Derive an expression for the emf in coil 2 and sketch
the emf vs. time, when

(@ i;=l; aconstant, and (b) i1=lpsinwt,
L]

o » \Z//- _\ o4 »

4P ; [ P

4—F5N, 4—F5N,

4 P 2 q P

P P
o— \\ o—
¢}
(polg m (main air gap)
Permeability: mM®¥  Depth: b Permeability: mM®¥  Depth: b
(Problem 3) (Problem 4)
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