Магазин форменной и спецодежды

Настенные часы с маятником La Mer GE028001
4 350 р.
Настенные часы с маятником La Mer GE028001

Модель: La Mer GE028001
Настенные часы с маятником
Механизм: Кварцевый
Корпус: Пластиковый
Цвет: Белый , Коричневый
Размер: 508x308x52 мм

Субституты (товары заменители)
Настенные часы с маятником La Mer GE033002
Модель: La Mer GE033002 Настенные часы с маятником Механизм: Кварцевый Корпус: Пластиковый Циферблат: Золотисто-Белый Цифры: Арабские Дополнительные функции: 12 классических мелодий Оснащены фотоэлементом, который автоматически переводит ча...
7 500 р.
Настенные часы La Mer GD004017
Модель: La Mer GD004017 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Коричневый , Белый Размер: 338x338x43 мм
2 550 р.
Настенные часы La Mer GD221-1
Модель: La Mer GD221-1 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Черный Размер: 380х380 мм
3 600 р.
Настенные часы с маятником La Mer GE027003
Модель: La Mer GE027003 Настенные часы с маятником Механизм: Кварцевый Корпус: Пластиковый Цвет: Белый Дополнительные функции: 12 мелодий (каждый час), автоотключение на ночь (светочувствительный элемент) Размер: 340x430x60 мм
4 200 р.
Настенные часы La Mer GD155006
Модель: La Mer GD155006 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Серебро, Белый Размер: 320x320x55 мм
2 100 р.
Настенные часы с маятником La Mer GE027G/G
Модель: La Mer GE027G/G Настенные часы с маятником Механизм: Кварцевый Корпус: Пластиковый, Стекло Цвет: золотой, Белый Дополнительные функции: 12 мелодий, автоотключение сигнала на ночь Размер: 340x430x60 мм
4 200 р.
Настенные часы с маятником La Mer GE039002
Модель: La Mer GE039002 Настенные часы с маятником Механизм: Кварцевый Корпус: Пластиковый Цвет: Белый , золотой Дополнительные функции: 8 мелодий, автоотключение сигнала на ночь Размер: 500x260x60 мм
4 050 р.
Настенные часы La Mer GB027002
Модель: La Mer GB027002 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Циферблат: Черный Цифры: Арабские Дополнительные функции: Плавный ход секундной стрелки Календарь: Число, день недели Размер: 267x267x52 мм
2 850 р.
Настенные часы La Mer GD115020
Модель: La Mer GD115020 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Белый, Коричневый Размер: 324x324x44 мм
2 400 р.
Настенные часы La Mer GL183001
Настенные часы в стиле ретро. Эти часы способны подарить интерьеру комнаты особое настроение. Модель: La Mer GL183001 Настенные часы Механизм: Кварцевый Корпус: МДФ Цвет: Коричневый Размер: 30 см
3 900 р.
Настенные часы La Mer GE005002
Модель: La Mer GE005002 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Желтый , Коричневый Размер: 369x276x57 мм
3 000 р.
Настенные часы La Mer GD207002
Модель: La Mer GD207002 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Черный Размер: 318х318 мм
2 700 р.
Настенные часы La Mer GD164014
Модель: La Mer GD164014 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Коричневый, Белый Размер: 298x298x50 мм
2 100 р.
Настенные часы La Mer GD107
Модель: La Mer GD107 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Циферблат: Бежевый Цифры: Римские Дополнительные функции: Механизм плавного хода, Часы стилизованы под старену (Искусственно состарены) Размер: 320х320 мм
2 850 р.
Настенные часы La Mer GD001009
Модель: La Mer GD001009 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: золото, Бежевый Размер: Диаметр 406 мм
2 000 р.
Настенные часы La Mer GE007020
Модель: La Mer GE007020 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Коричневый Размер: 470x290x68 мм
4 350 р.
Настенные часы La Mer GD204002
Модель: La Mer GD204002 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Черный, Белый Размер: 257x257x48 мм
1 790 р.
Настенные часы La Mer GD231001
Модель: La Mer GD231001 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Белый Размер: 361x361x45 мм
3 000 р.
Настенные часы La Mer GD124001
Модель: La Mer GD124001 Настенные часы Механизм: Кварцевый Корпус: Пластиковый Цвет: Белый , Темно-Коричневый Размер: 390x425x60 мм
3 900 р.
Настенные часы La Mer GD043 GOLD
Настенные часы , которые добавят вашему интерьеру оригинальности. Модель: La Mer GD309-9 Настенные часы Механизм: Кварцевый Отображение времени: Аналоговое Циферблат: Светлый Материал: Пластик Размер: 380x290x43
2 100 р.
Выбрать, заказать и купить Настенные часы с маятником La Mer GE028001 можно в интернет-магазине Форма-одежда. Описание с фотографиями и отзывы покупателей - все для вашего удобства выбора. В Москву, Московскую область (Подмосковье) его доставит курьер, а почтой России или другими компаниями отправляем в Санкт-Петербург (СПб), Астрахань, Барнаул, Белгород, Брянск, Великий Новгород, Владивосток, Волгоград, Вологду, Воронеж, Екатеринбург, Иваново, Ижевск, Йошкар-Олу, Иркутск, Казань, Казахстан, Калининград, Калугу, Кемерово, Киров, Краснодар, Красноярск, Курск, Липецк, Магадан, Магнитогорск, Набережные Челны, Нижний Новгород, Новокузнецк, Новороссийск, Новосибирск, Норильск, Омск, Орел, Оренбург, Пензу, Пермь, Псков, Ростов-на-Дону, Рязань, Самару, Саратов, Севастополь, Симферополь, Смоленск, Сочи, Ставрополь, Тверь, Тольятти, Томск, Тулу, Тюмень, Улан-Удэ, Ульяновск, Уфу, Хабаровск, Чебоксары, Челябинск, Якутск, Ялту, Ярославль и другие регионы. Также возможна доставка в страны ближнего и дальнего зарубежья.

Часы

Куранты Московского кремля

Часы́ — прибор для определения текущего времени суток и измерения продолжительности временных интервалов в единицах, меньших чем одни сутки.

Содержание

Классификация

Настенные солнечные часы в Соловецком монастыре
  • По размерам и портативности:
    • карманные часы;
    • наручные часы;
    • каретные часы;
    • настольные часы;
    • настенные часы;
    • напольные часы;
    • башенные часы.
  • По механизму измерения:
    • солнечные часы;
    • огненные часы;
    • песочные часы;
    • водяные часы;
    • механические часы;
    • камертонные часы;
    • кварцевые часы;
    • электронные часы;
    • астрономические часы;
    • атомные часы.

Солнечные часы

Эти часы основаны на том, что солнце отбрасывает тень от предметов, и его путь по небу одинаков в одинаковые дни разных лет. Используя расчерченный круг и поправки на широту местности можно оценить, который сейчас час.

Водяные часы

Старинные китайские водяные часы.

Водяные часы, также называемые клепсидрой имеют принцип действия схожий с песочными часами[1].

Наряду с солнечными часами, возможно, являются старейшими приборами для измерения времени, если не принимать во внимание вертикальную палку-гномон по длине падающей тени которого которого ориентировались во времени древние скотоводы. Учитывая глубокую древность водяных часов, где и когда они впервые появились науке не известно. Чашеобразный отток является простейшей формой водяных часов, и, как известно, существовал в Вавилоне и в Египте около XVI века до нашей эры. В других регионах мира, включая Индию и Китай, также есть древние признаки существования водяных часов, но самые ранние даты их появления являются менее определенными. Некоторые авторы, однако, пишут,что водяные часы имелись в этих областях уже в начале 4000 г. до н. э.

За древнегреческой и древнеримской цивилизациями признаётся приоритет в усовершенствовании формы водяных часов, которые получили сложный комплекс зубчатых передач, расчитанный на круглосуточную работу[2](недоступная ссылка) и состоявший из причудливого механизма. Улучшения также способствовали повышению точности. Эти достижения были переданы через Византию в исламский мир, и, в конечном счёте, проделали свой путь обратно в Западную Европу. Независимо от греко-римского мира, китайцы разработали свои собственные усложненные водяные часы (水鐘) в 725 г., передав свои идеи Корее и Японии.

Некоторые проекты водяных часов были разработаны независимо друг от друга, а некоторые знания были перенесены посредством распространения торговли. В обществах, предшествующих современному, не было нужды в особо точных методах с повышенными требованиями к хронометрированию, подобно существующим в современном индустриальном обществе, где каждый час работы или отдыха контролируется, и работа может начать или закончить в любое время, независимо от внешних условий. Вместо этого, водяные часы в древних обществах использовались в основном для астрологических измерений. Эти ранние водяные часы были откалиброваны с солнечными часами. Никогда не достигая уровня точности современных часов, водяные часы были самыми точными на протяжении нескольких тысячелетий и широко использовались как устройства хронометража, пока в Европе в XVII столетии не были заменены на более точные маятниковые часы.

Исламской цивилизации приписывают дальнейшее улучшение точности водяных часов, тщательно продуманных инженерно. В 797 (или, возможно, 801 году), багдадский халиф из династии Аббасидов, Харун ар-Рашид, подарил Карлу Великому индийского слона по кличке Абул-Аббас вместе с «особо сложным образцом» водяных часов.[3]

В XIII веке, Аль-Джазари (1136—1206 гг.), курдский инженер из Месопотамии, который работал на правителя из династии Артукидов Дияр-Бакра Насир аль-Дина, сделал многочисленные часы всех форм и размеров. В книге описано 50 механических устройств в шести категориях, в том числе водяные часы. Самые известные часы, включали устройства «Слон», «Писец» и «Замок», которые были успешно восстановлены.

Песочные часы

Эти часы основаны на том, что точно откалиброванный речной песок проходит через узкое отверстие, в 1 песчинку, в одинаковые промежутки времени. При этом люди быстро догадались использовать 2 полости, соединённые узким перешейком с отверстием для пересыпания песка. Половинки стеклянного сосуда имели форму чаши и предназначались для измерения небольших промежутков времени, но имели недостаток: после пересыпания песка из верхней полости в нижнюю их приходилось переворачивать.

На флоте песочные часы назывались склянками.

Огненные часы

Огненные часы впервые появились в Китае. Они состояли из спирали или палочки из горючего материала с подвешенными металлическими шариками. При сгорании материала шарики падали в фарфоровую вазу, производя звон.

Впоследствии разновидность огненных часов появилась и в Европе. Здесь использовались свечи, на которые равномерно наносились метки. Расстояние между метками служило единицей времени.

Механические часы

Французские каминные часы в стиле "Ампир" представляют нереиду Галатею (1822), Большой Екатерининский дворец (Царское Село, Россия).

У всяких механических часов нужно различать четыре существенных части:

  1. двигатель (пружина или гиря)
  2. передаточный механизм зубчатых колёс
  3. регулятор, обусловливающий равномерность движения
  4. распределитель или спуск, с одной стороны, передающий от двигателя импульсы регулятору, необходимые для поддержания колебания последнего, и, с другой стороны, подчиняющий движение передаточного механизма, а следовательно, и действие двигателя закономерности колебания регулятора.

Измерителем времени в тесном смысле слова служит регулятор. Зубчатые колёса, скреплённые с ними стрелки циферблата — счётчики отмеренных регулятором единиц времени. Признавая суточное вращение земли вокруг её оси строго равномерным, мы в нём имеем единственный масштаб для сравнения промежутков или единиц времени. Обыкновенно за единицу времени принимается секунда, 1/86400 часть суток. О различном счёте времени, о звёздных, средних, истинных сутках — см. Время.

Регуляторы часовых механизмов устраиваются так, чтобы отмеряемые ими промежутки времени равнялись или целой секунде, или половине, четверти или одной пятой секунды. Если регулятор начнёт почему-либо отмеривать меньшие промежутки времени, счётчик укажет большее их число в данном периоде времени. В этом случае часы, как говорят, уходят вперёд. Если же интервал регулятора больше заданного — часы отстают. Условившись о начальном моменте суток, иначе говоря, о моменте, когда счётчик часов должен показывать нуль протёкших единиц времени, приходим к понятию о поправке часов. Она положительна, если часы отстали, отрицательна — если ушли вперёд. Изменение поправки часов за определённый промежуток времени называется ходом часов (например, суточный, недельный, часовой ход). Ход положителен, если часы отстают, отрицателен, если часы уходят вперёд. Ход выражает собой именно уклонение отмеряемых регулятором промежутков времени от принятой единицы. Поправка часов есть величина условная и, кроме того, в любой момент простым передвижением минутной стрелки счётчика поправка часов может быть сделана меньше одной минуты.

Достоинство же часов заключается в малости, а главное — в постоянстве хода. Ход хороших астрономических часов и хронометров должен по возможности не зависеть от изменений температуры, давления, влажности воздуха, случайных толчков, стирания осей механизма, сгущения смазывающего масла, молекулярных изменений в различных частях механизма и т. д. Астрономические часы делятся на два главных типа:

  • «постоянные», в которых движущей силой служит тяжесть гирь, а регулятором колебания маятника
  • «переносные», где движение производится силой упругости развёртывающейся постепенно пружины, а регулируется колебаниями упругой, тонкой спирали, соединённой с т. н. балансом (см. ниже).

Часовые механизмы первого типа называются в астрономии «часами» в тесном смысле слова или «маятниками». Они находятся на обсерваториях при постоянных астрономических инструментах (см. Практическая астрономия), укреплены на каменных столбах или в стене; часто помещают часы в подвале обсерватории, чтобы предохранить по возможности от перемен температуры («нормальные» часы). Подвал посещают только для заводки часов, так как даже теплота тела может повлиять на их ход. Показания же часов, то есть «удары» маятника (всегда секундного), сравнивают с другими часами с помощью микрофона, установленного в подвале и соединённого с телефоном (это выражение, хотя и общепринято, но совершенно неверно. Удары «тиканье» производит не маятник (регулятор), а механизм спуска). При надлежащей установке и уходе «постоянные» астрономические часы должны иметь суточный ход не более 0,3 с, а его суточные изменения не должны превосходить одной сотой секунды.

Наручные часы

Часовые механизмы второго типа называются хронометрами. Различают «столовые», или бокс-хронометры (размеры их примерно 1½—2 децим. диаметром, 1 децим, высотой; одно простое колебание баланса длится ½ секунды), и карманные хронометры (размер общеизвестный; обыкновенно так наз. четыредесятники, то есть полное двойное колебание баланса длится 0,4 секунды, простое колебание — 1/5 секунды). Качества карманных хронометров в среднем чувствительно ниже качеств столовых. Хронометры служат при определении географических положений мест, при работах переносными астрономическими инструментами (см. Практическая астрономия), при определении времени и долготы в море и т. д. Столовые хронометры на кораблях помещаются на привесе Кардана. Постоянные часы («маятники») почти исключительно, а хронометры в большинстве случаев регулируются на секунды звёздного времени — т. н. «звёздные» часы и хронометры. Реже употребляются «средние» хронометры (то есть идущие по среднему времени). Выбор обусловлен удобством наблюдений или их обработки для тех или других задач астрономов.

В часах и хронометрах астрономами ценятся ещё определённые, но не резкие и без лишних шумов удары («тиканье»). Как лучших мастеров астрономических часов или хронометров нужно назвать Кессельса, Пиля, Дента, Тиде, Ховю (Howüh), Кноблиха, Фродшэма, Нардэна. Творцы «высшего» часового искусства и часовых механизмов: Пётр Леруа (англ. Pierre Le Roy), Джон Гаррисон, Джордж Грэхэм (англ. George Graham), Дютертр, Джон Арнольд (англ. John Arnold), Фердинанд Берту (англ. Ferdinand Berthoud), Юргенсен.

Ходики

Хо́дики — небольшие стенные часы упрощённого устройства с гирями[4] — вариант механических часов с маятником, анкерным спуском и гирями в качестве двигателя. В качестве маятника в некоторых моделях использовали две "ноги", движущиеся в противоход друг другу. Встречается разновидность с боем (ещё одна цепочка со съёмной гирей для боя, которую можно при желании снять с цепочки и повесить рядом на специальный крючок — так называемый «режим без боя»).

Часы с кукушкой

Часы с кукушкой

Часы́ с куку́шкой — настенные часы в изящном корпусе, чаще всего механические часы (ходики) с боем, имитирующим пение кукушки. Обычно звуковые сигналы (от одного до двенадцати) раздаются каждый час, отсчитывая текущее время и нередко перемежаясь ударами гонга («бум — ку-ку»). Механизм, иммитирующий кукушку, разработан в середине XVIII века и с тех пор практически не претерпел изменений. Родиной часов с кукушкой считается расположенный в центре региона Шварцвальд немецкий городок Триберг, по крайней мере, именно там расположен музей часов с кукушкой[5].

Кварцевые часы

Разновидность электронно-механических часов. Принцип действия основан на пьезоэлектрическом эффекте, свойстве кристаллов кварца, например, деформироваться под воздействием внешнего электрического поля, а также поляризоваться при механической деформации. При этом кристалл кварца, обладая маленькими размерами, может в значительно большей мере стабильно генерировать колебания, имеющие высокую временную и температурную стабильность. Механизм кварцевых часов состоит из элемента питания, электронного генератора, счётчика делителя и выходного каскада усилителя, нагруженного на катушку синхронного электродвигателя, который через систему зубчатых колёс приводит в движение стрелки часов.

Электронные часы

Часы на экране КПК
Электронные настенные часы
Настольные часы-будильник
Современные электронные часы с календарём и термометром

Часы, основанные на подсчёте периодов колебаний от задающего генератора с помощью электронной схемы и выводе информации на цифровой дисплей.

Первые электронные часы делались на отдельных лампах затем транзисторах и микросхемах.

Первые наручные электронные часы обладали светодиодным дисплеем, но они могли показывать время очень недолго: слишком прожорливыми оказывались светодиоды. Затем использовали свойства жидких кристаллов ориентироваться во внешнем электрическом поле и пропускать свет с одним направлением поляризации. Будучи помещённым между двумя поляризаторами, свет от внешнего источника вовсе поглощался системой поляризатор-жидкий кристал-поляризатор-отражатель при наличии электрического поля становился тёмным и образовывал элемент изображения. В результате этого было значительно снижено энергопотребление, и замена элементов питания происходит намного реже.

В современные электронные часы встроен, как правило, специализированный микроконтроллер, и у часов появилось много сервисных функций (будильники, мелодии, календари и т. д.), но микроконтроллер так же продолжает считать периоды колебаний все того же кристалла кварца.
Замечание: Существуют также электронные часы, основанные на принципе подсчёта периодов частоты питающей сети, во многих странах существуют очень жёсткие требования к стабильности частоты, но все же при колебании нагрузки частота сети может изменяться, и точность таких часов не может считаться нормальной, хотя для многих людей она является достаточной.

Разновидность электронных часов, которые отображают время в двоичном коде, называется «бинарные часы» (англ. Binary watch). Для отображения двоичных разрядов обычно используются светодиоды. Число групп светодиодов может быть различным, они могут отличаться размерами и местоположением. Часть светодиодов показывает часы, другая — минуты. Могут иметься светодиоды отвечающие за отсчет секунд, дату и т. п.

Радиочасы

Электронные или кварцевые часы, которые могут сверять свой ход по сигналам точного времени вещательных или специальных радиостанций, а также (для получения особо точного времени) спутников GPS.

Сети часофикации

Сети часофикации предназначены для обеспечения точным временем широкого круга абонентов в городах, на предприятиях и т. д. Состоят из одних первичных и нескольких вторичных часов, а также линий связи.

Первичные часы предназначены для точного отсчёта времени и его передачи на вторичные часы.

Ранее представляли собой астрономические часы или хронометр, где вместо стрелок был электро-механический блок формирования команд на вторичные часы, в простейшем случае — обеспечивавший замыкание электроцепи раз в минуту.

Сейчас, с развитием электроники и телекоммуникаций — электронные часы высокого класса точности с несколькими каналами введения поправок.

Вторичные часы предназначены для показа времени в сетях часофикации.

Ранее представляли собой механизм без двигателя, регулятора и секундной стрелки, минутная стрелка двигалась соленоидом от импульсов чередующейся полярности напряжением 27 вольт от первичных часов, часовая — через передаточный механизм 1:12[источник не указан 766 дней].

В настоящее время — недорогие самостоятельные кварцевые часы с коррекцией от первичных часов, возможно также напрямую по радиосигналам точного времени, в отдельных случаях — GPS.

Производство часов

В СССР и России

В Советском Союзе в 1980-е массовое производство часов для персонального использования (бытовых) было организовано на 13 заводах:

  • Саратовский завод «Рефлектор» — часы марки «Электроника»
  • 1-й Московский часовой завод — часы марки «Полёт», в экспортном исполнении — «Sekonda»
  • 2-й Московский часовой завод — часы марки «Слава»
  • Ереванский часовой завод — часы марки «Севани»
  • Ереванский завод художественных часов — часы марки «Наири»
  • Минский часовой завод — часы марки «Луч»
  • Орловский часовой завод — часы марки «Янтарь»
  • Пензенский часовой завод — часы марки «Заря»
  • Заря С.Уайт Карсон Тайм Технолоджи Интернейшнл Лимитед - часы марки «Zaritron»
  • Петродворцовый часовой завод — часы марки «Ракета».
  • Сердобский часовой завод — часы марки «Маяк»
  • Угличский часовой завод — часы марки «Чайка»
  • Челябинский часовой завод — часы марки «Молния»
  • Чистопольский часовой завод — часы марки «Восток»

Интересные факты

Цветочные часы (дар г. Женевы к 300-летию основания Санкт-Петербурга в мае 2003)
  • На разных этапах развития цивилизации человечество использовало солнечные, звёздные, водяные, огневые, песочные, колёсные, механические, электрические, электронные и атомные часы.
  • Направление движение стрелок часов «по часовой стрелке» и «против часовой стрелки» используется для указания направления кругового движения.
  • Традиционное направление движения часовой стрелки совпадает с направлением, в котором движется тень горизонтальных солнечных часов, расположенных в северном полушарии Земли. Однако, существуют часы, у которых стрелки движутся «против часовой стрелки» (как у солнечных настенных).
  • На циферблатах с римскими цифрами четвёртый час иногда обозначают как IIII вместо IV.[6]
  • На рекламе стрелочных часов обычно около 10:10 или 8:20. Это делается для того, чтобы стрелки не закрывали название. Кроме того, время 10:10 на часах в витрине напоминают улыбочку (смайлик), что положительно влияет на лояльность покупателя[7].
  • Условный циферблат часов часто используется при ориентировании на местности для указания цели, маршрута или направления при взаимодействии подразделений (как правило американской армии) или отдельных наблюдателей. 12 часов указывают, как правило на фронт, текущий маршрут движения, или текущее положение самого наблюдателя или его технического средства. Направление наблюдаемого объекта (или маршрута) указывается в направлении той цифры циферблата, угловому значению которого он соответствует относительно положения наблюдателя, как если бы циферблат был горизонтален, а его центр совпадал с наблюдателем. Так, объект находящийся строго справа, будет обозначен как «на 3 часа». После указания направления добавляется цифра, характеризующая расстояние до объекта в метрах.
  • В Москве XVII века на часах Спасской башни двигалась не единственная часовая стрелка, а циферблат [8].

См. также

  • Антикитерский механизм
  • Время
  • Время суток
  • Калибр
  • Парковочные часы
  • Секундомер
  • Таймер
  • Часовое дело
  • Часовщик
  • Хронометр
  • Палубные часы

Примечания

  1. Водяные, песочные и огненные часы не являются часами в обычном понимании, так как они не показывают текущее время и не предназначены для точного измерения произвольно взятых интервалов времени, строго говоря, они являются таймерами, то есть воспроизводят заданные временные отрезки.
  2.  (англ.) The History of Clocks
  3.  (англ.) James Peter Ancient Inventions. — New York, NY: Ballantine Books, 1995. — P. 126. — ISBN 0-345-40102-6
  4. Толковый словарь русского языка
  5. Триберг - музей часов с кукушкой
  6. bhi — clocks, watches &amp the art and science of timekeeping
  7. Стрелки — «руки» часов
  8. Движение «циферного круга»

Ссылки

При написании этой статьи использовался материал из Энциклопедического словаря Брокгауза и Ефрона (1890—1907).

Источник: Часы

Часы (прибор)

Часы, прибор для измерения текущего времени (в секундах, минутах, часах). Ч. относятся к категории «приборов времени», куда входят также хронометр, секундомер, таймер, реле времени и комбинированные приборы, например Ч. с секундомером. Для измерения времени можно использовать равномерное поступательное или вращательное движение и периодические колебания; мерилом времени в этих случаях будет соответственно пройденный путь (или перемещение), угол поворота или число колебаний.

Первым устройством, с помощью которого человек измерял время, были солнечные Ч. Уже в середине 3-го тысячелетия до н. э. в качестве простейших Ч. использовался гномон. В Древнем Египте и Греции время отсчитывали по солнечным Ч. с горизонтальными или вертикальными циферблатами (рис. 1). В Самарканде в 1-й половине 15 в. Улугбек построил солнечные Ч. высотой около 50 м. В средние века в Европе значительное распространение получили Ч. с вертикальным циферблатом. Такие Ч., например, сохранились в Москве на здании Историко-архивного института и старом здании МГУ. Наряду с солнечными Ч. уже во 2-м и 1-м тыс. до н. э. в Индии, Египте, Китае и Греции строились водяные Ч., которые показывали время и днём, и ночью. Простейшие водяные Ч. представляли собой сосуд со шкалой, проградуированной в единицах времени. В сосуд капля за каплей поступала вода из наполненного до краев (из внешнего источника) резервуара. Постоянство давления воды в резервуаре обеспечивало равномерное наполнение сосуда и равномерное повышение уровня воды в нём, отмечаемое по шкале. Около 150 до н. э. Ктесибий создал водяные Ч. (рис. 2), ставшие прототипом Ч., которые применялись во многих странах вплоть до 18 в. Равномерное движение положено в основу функционирования и некоторых других типов Ч., в том числе песочных.

Первое упоминание о механических Ч. содержится в византийской антологии (конец 6 в.). Одни историки приписывают изобретение механических Ч. Пацификусу из Вероны (начало 9 в.), другие ‒ монаху Герберту (впоследствии папа Сильвестр II), якобы в 996 сделавшему гиревые башенные Ч. для г. Магдебурга, которые не были механическими Ч. в современном понимании. Скорее всего это были водяные Ч. с использованием механизмов для приведения в действие дополнительных устройств, например механизма боя Ч., но не отсчёта времени. Достоверно известно, что простые по конструкции механические башенные Ч. были построены в Милане в 1335; в 1348‒64 Донди в Италии создал Ч., которые наряду с отсчётом времени воспроизводили движение Солнца, Луны и пяти планет; в 1354 были установлены Ч. Страсбургского собора с курантами, календарём и движущимися фигурами. В России первые башенные Ч. были сделаны в 1404 в Московском Кремле монахом Лазарем Сербиным; они имели гиревые двигатели, механизм боя, планетарный механизм. В 15‒17 вв. башенные Ч. начали устанавливать во многих городах России.

В 14 в. появились первые механические Ч. со шпиндельным спуском (рис. 3). По сравнению с водяными Ч. шпиндельные Ч. были более совершенными, но всё же точность их хода не превышала 0,5 ч в сутки; до 16 в. они имели одну лишь часовую стрелку. Около 1510 нюрнбергский механик П. Хенлейн впервые применил вместо гирь стальную пружину и создал карманные Ч. со шпиндельным механизмом. Из-за несовершенства пружин и самого шпиндельного механизма, не имеющего собственного периода колебаний, показания этих Ч. сильно зависели от степени заводки пружины. В 1525 Я. Цех из Праги предложил фузею, или улитку, ‒ приспособление для выравнивания усилия пружины во времени, что позволило повысить точность пружинных Ч. Шпиндельные Ч., хотя и имели невысокую точность, отличались высокой надёжностью и просуществовали до конца 19 в.

Огромное значение для повышения точности Ч. имело открытие Г. Галилеем изохронности малых колебаний маятника, т. е. независимости периода его колебаний от амплитуды. Галилей около 1640 предложил новый спусковой механизм, напоминающий современный хронометровый, но его идея не получила практического воплощения. Изобретателем современных механических Ч. по праву считается Х. Гюйгенс, который в 1657 применил маятник в качестве регулятора Ч. Маятниковые Ч. даже с несовершенным шпиндельным механизмом позволили снизить погрешность за сутки до 5‒10 сек. В 1675 английский часовщик У. Клемент предложил заменить шпиндельный механизм на крючковый, представляющий собой простейшую разновидность анкерного спускового механизма (см. Анкер). Такой механизм сохранился до наших дней в простейших маятниковых Ч. типа ходиков (рис. 4). Новый шаг в совершенствовании Ч. связан с именем англичанина Дж. Грагама, который изобрёл несвободный анкерный механизм, имеющий значительно меньшие потери энергии, чем крючковый механизм Клемента. В 1675 Гюйгенс предложил в качестве регулятора колебаний использовать систему «баланс‒спираль». Баланс ‒ это колесо с массивным металлическим (обычно латунным) ободом, укрепленное на стальной оси; спираль ‒ тонкая пружина, один конец которой крепится к оси баланса, а другой ‒ к неподвижной опоре. Выведенная из состояния покоя система «баланс ‒ спираль» совершает колебания вокруг своей оси; момент инерции баланса и жёсткость спирали определяют период колебаний системы. Такая колебательная система обладает собственным периодом колебаний; она достаточно надёжна при переноске и транспортировке Ч. В связи с применением балансового регулятора в Ч. с пружинным двигателем потребовалось дальнейшее совершенствование спусковых механизмов. До конца 19 в. в карманных Ч. широко применялся изобретённый Грагамом в начале 18 в. цилиндровый механизм. Со 2-й половины 19 в. получил распространение свободный анкерный механизм, до сего времени применяющийся во всех переносных, в том числе наручных и карманных, Ч. В связи с повышением точности часовых механизмов в конце 17 в. в карманных Ч. устанавливают минутные стрелки, а примерно с 1760 в Ч. стали применять секундные стрелки.

Значительное влияние на точность хода маятниковых, особенно балансовых, Ч. оказывает изменение температуры окружающей среды. Погрешность хода маятниковых Ч. за сутки при изменении температуры на 1°С за счёт изменения длины маятника при стальном стержне составляет 0,5, а при деревянном ‒ 0,2 сек; для балансовых Ч. со стальной спиралью около 11 сек, в основном за счёт изменения её жёсткости. В середине 18 в. было создано несколько типов маятников, температурная погрешность которых устранялась методом компенсации. Температурная компенсация балансового регулятора, основанная на применении биметалла, была предложена в 1761 французским часовым мастером П. Леруа. Такие балансы с компенсационными грузами по ободу применяются в современных морских хронометрах. Русский механик И. П. Кулибин в конце 18 в. предложил оригинальную конструкцию биметаллического баланса. В конце 19 ‒ начале 20 вв. швейцарский физик Ш. Э. Гильом создал материалы с близким к нулю коэффициентом линейного расширения (для маятников) ‒ инвар, и с минимальным значением термоэластического коэффициента (для часовых спиралей) ‒ элинвар. Использование этих материалов в Ч. в сочетании с компенсационными устройствами практически устранило температурные воздействия на ход механических Ч. Так, например, Ч. с маятником из инвара даже без компенсационного устройства имеют температурную погрешность хода за сутки менее 0,05 сек на 1°С, а наручные Ч. со спиралью из элинвара ‒ менее 0,5 сек, что вполне удовлетворяет требованиям, предъявляемым к Ч. широкого потребления.

В России в 18 в. над совершенствованием Ч., в частности спускового механизма и способов температурной компенсации, работали выдающиеся механики Кулибин, Т. И. Волосков, инженер Л. Сабакин. Кулибин создал ряд уникальных Ч., в том числе хранящиеся в Эрмитаже Ч. в форме яйца, с фигурами, автоматически выполняющими во время боя сложные движения; карманные планетарные Ч. с семью стрелками, показывающими часы, минуты, секунды, дни недели, месяцы, фазы Луны, восход и заход Солнца. В 19 в. в России успешно работали над совершенствованием Ч. механики Д. И. Толстой, И. П. Носов; часовщики братья И. Н. и Н. Н. Бутеноп в 1851‒52 полностью реконструировали куранты Спасской башни Московского Кремля (см. Кремлёвские куранты).

По назначению Ч. можно разделить (условно) на бытовые и специальные. В зависимости от условий использования различают бытовые Ч. наручные, карманные, настольные, настенные, уличные, башенные. В зависимости от назначения выделяют специализированные Ч. для подводного плавания, дорожные, антимагнитные и др. Имеется большая группа Ч. специального, служебного назначения: сигнальные, табельные, процедурные, программные и др. По типу колебательных систем, используемых в современных Ч., различают маятниковые, балансовые, камертонные, кварцевые и квантовые часы. Поскольку в Ч. поддержание колебаний и индикация могут выполняться от разных энергетических источников и разными способами, то различают механические, электромеханические (или контактные), электронно-механические (или бесконтактные) и электронные Ч. (например, кварцевые с цифровой индикацией на жидких кристаллах). Особо выделяют синхронные или, как их иногда называют, электрические Ч., работающие от сети переменного тока. Такие Ч. по существу являются вторичными, а роль первичных Ч. выполняет генератор электростанции. Первичными Ч. могут быть также обычные Ч., как правило, повышенной точности, от которых с минутными или полуминутными интервалами по проводам передаются электрические импульсы вторичным Ч.

Наиболее распространены (70-е гг. 20 в.) механические Ч. с механическим (пружинным, гиревым) приводом. Основные узлы современных механических Ч. (рис. 5) ‒ двигатель, система колёс, ход или спусковой механизм, регулятор, стрелочный механизм и механизм заводки Ч. Пружина (двигатель) вращает барабан 1 (внутри которого она находится) и через него систему колёс 2‒5, частота вращения которых определяется периодом колебаний системы «баланс ‒ спираль» 6‒7. Числа зубьев колёс и период колебаний баланса подбирают так, чтобы колесо 2 делало один оборот в час, а колесо 4 ‒ один оборот в минуту; на их осях могут устанавливаться соответственно минутная и секундная стрелки. Практически же минутная стрелка закрепляется не на самой оси колеса 2, а на трибе 9, позволяющем переводить стрелку независимо от колёс 2‒5. Колесо 2 через передачу 9‒11‒ 12 приводит в движение колесо 10, на котором крепится часовая стрелка. При заводке вращение головки 15 (через вал 14, муфту 18 и колёса 17, 19 и 20) сообщается валу, на который наматывается пружина. При переводе стрелок вытягивают головку 15, муфта 18 с помощью рычагов 16 отводится от триба 17 и вступает в зацепление с переводными колёсами 13, вращение которых сообщается стрелкам. Современные Ч. оснащают часто дополнительным механизмом, показывающим числа и дни недели, а в крупных часах и месяцы. В наручных Ч. часто применяют противоударные устройства, предохраняющие их механизм от поломок. Всё большее распространение получают наручные механические Ч. с автоматическим подзаводом, в которых на механизме Ч. со стороны крышки расположен свободно качающийся груз в виде неуравновешенного сектора. При ношении Ч. на руке груз качается и через колёсную передачу с реверсивным устройством подзаводит пружину; за 10‒12 часов пружина получает завод, обеспечивающий ход Ч. в течение 20 и более часов. Потребитель освобождается от необходимости заводить Ч. и, что особенно важно, они работают при более постоянном значении усилия заводной пружины, в результате чего Ч. имеют более высокую точность хода.

Первые попытки применения электрических устройств в Ч. относятся к 30‒40-м гг. 19 в. Первоначально получили распространение электромеханические маятниковые и балансовые Ч., в которых завод осуществлялся с помощью электромагнита, электродвигателя и т.д. Большое значение для дальнейшего развития электромеханических Ч. имели работы швейцарских часовщиков М. Гиппа и Л. Бреге, создавших Ч. с электроприводом. В электромеханических Ч. с электроприводом источник питания через контакты, управляемые маятником или балансом, периодически подключается к приводу, в результате чего в спусковом регуляторе устанавливаются автоколебания. Роль двигателя таких Ч. выполняет сама колебательная система, движение которой с помощью спец. механизма преобразуется в прерывистое вращательное движение стрелок.

До середины 20 в. электромеханические Ч. были в основном крупногабаритными, маятникового, реже балансового типа. На усовершенствование конструкции малогабаритных, и прежде всего наручных, электромеханических балансовых Ч. значительное влияние оказало появление малогабаритных и энергоёмких источников тока, миниатюрных контактов. В начале 50-х гг. 20 в. появились балансовые наручные электромеханические Ч., выпущенные фирмами во Франции ‒ «Лип» (Lip), в США ‒ «Гамильтон» (Hamilton), электрическая цепь которых при подаче импульса балансу замыкалась механическими контактами.

Замена механических контактов электронными ключами на транзисторах, туннельных диодах, интегральных микросхемах решила проблему повышения надёжности электронно-механических Ч. Современные наручные электронно-механические балансовые Ч. имеют точность хода ╠15 сек в сутки, потребляют около 10 мка от источника тока напряжением 1,3‒1,5 в. Такие Ч. с традиционными колебательными системами (осцилляторами) ‒ маятником или «баланс ‒ спиралью» ‒ в отличие от контактных Ч. иногда называют бесконтактными. Быстродействие электронных устройств и возможность управлять ими при малых амплитудах осцилляторов обусловили развитие камертонных и кварцевых Ч., обладающих высокой точностью.

В 70-х гг. 20 в. получили широкое распространение наручные и настольные камертонные Ч. с автономной работой без смены батареи от 1 до 2 лет при точности хода ╠2 сек в сутки. Первый камертонный регулятор с контактным прерывателем был создан А. Гийе в 1915. В 1919 У. Эклс и Ф. Джордан (Великобритания) и А. Абрахам и Э. Блох (Франция) предложили схему лампового камертонного регулятора с электромагнитной системой привода. Камертонные регуляторы на транзисторах для наручных Ч. впервые были изготовлены фирмой «Булова уотч компани» (Bulova Watch Со) в США в 1950; в СССР камертонные Ч. были выпущены в 1962 на 2-м Московском часовом заводе. В этих Ч. применен храповой механизм для преобразования колебаний камертона во вращение стрелок. Одна из схем электромеханических камертонных Ч. представлена на рис. 6. При колебаниях камертона в обмотке освобождения наводится эдс, которая открывает транзистор, в результате чего в импульсную обмотку поступает ток от источника питания. Частота колебаний камертона ‒ 360 гц.

В электронно-механических Ч. с относительно высокочастотными (порядка 32 кгц) кварцевыми осцилляторами электрические импульсы спускового регулятора управляют работой шагового или синхронного электродвигателя или синхронизируют работу двигателей постоянного тока. В этих случаях схема управления состоит из электронного делителя частоты, схемы формирования импульсов и усилителей. Большинство кварцевых Ч. имеет шаговый электродвигатель. Регулировка хода Ч. осуществляется с помощью триммера в цепи кварцевого генератора. Впервые схема кварцевых Ч. была предложена В. А. Маррисоном (Великобритания) в 1929; в конце 70-х гг. такие Ч. выпускают многие фирмы, например в Швейцарии «Патек Филипп Эбош» (Patek Philippe Ebauches), «Омега» (Omega); в США ‒ «Гамильтон»; в Японии ‒ «Сэйко» (Seiko). Высокотемпературная стабильность, повышенная добротность и устойчивость кварцевых генераторов к внешним динамическим воздействиям обеспечивают точность бытовых малогабаритных электронно-механических Ч. около 2 сек, а в крупногабаритных прецизионных ‒ 0,001 сек в сутки.

Кварцевые наручные Ч. получили распространение благодаря возможностям современной технологии изготовления полупроводников и созданию интегральных микросхем. Ч. с электронной схемой и цифровой индикацией на жидких кристаллах или светодиодах называются электронными. Электронная часть этих Ч. содержит, кроме кварцевого генератора, делители частоты (счётчик), дешифраторы (рис. 7а). В СССР выпускаются (1977) кварцевые часы как со стрелочной, так и с цифровой индикацией (рис. 7б).

Для согласования показаний группы Ч. применяются системы единого времени. Они состоят из первичных высокоточных Ч. и группы вторичных Ч., соединённых с первичными каналами связи. Первичные Ч. управляют работой вторичных Ч., которые могут быть обычными электромеханическими Ч. или счётчиками электрических импульсов. Для повышения точности и надёжности системы единого времени вторичные Ч. часто делают автономными (самостоятельно идущими), ход которых периодически корректируется или синхронизируется сигналами точного времени от первичных Ч.

Современные Ч. обеспечивают широкий диапазон по точности в зависимости от практических потребностей измерения времени. Так, например, атомные эталоны, используемые, в частности, при космических исследованиях, имеют относительную погрешность около 10¾13; высокоточные маятниковые Ч. порядка 10¾11; кварцевые морские хронометры 10¾8 (т. е. точность их хода составляет несколько тысячных долей сек за сутки); наручные кварцевые часы имеют точность хода в пределах 2 сек в сутки, камертонные и балансовые электронно-механические Ч. до 15 сек в сутки; механические бытовые Ч. высокого качества до 5 сек, а среднего качества 30‒60 сек в сутки; механические будильники 1‒1,5 мин в сутки.


Лит.: Аксельрод З. М., Теория и проектирование приборов времени, Л., 1969; Дроздов Ф. В., Приборы времени, М., 1940; Баутин Н. Н., Динамические модели свободных часовых ходов, в кн.: Памяти А. А. Андронова, М., 1955; Шполянский В. А., Чернягин Б. М., Электрические приборы времени, М., 1964; Константинов А. И., Флеер А. Г., Время, М., 1971; Andrade J. F. С., Horlogerie et chronométrie, P., 1924; Defossez L., Théorie générale d▓horlogerie, t. 1, Le Chaux-de-Fonds, 1950; Haag J., Les mouvements vibratoires, t. 1. P., 1952.

В. И. Денисов, Б. М. Чернягин.

Источник: Часы (прибор)

Часы

I Часы́

        прибор для измерения текущего времени (в секундах, минутах, часах). Ч. относятся к категории «приборов времени», куда входят также Хронометр, Секундомер, Таймер, Реле времени и комбинированные приборы, например Ч. с секундомером. Для измерения времени можно использовать равномерное поступательное или вращательное движение и периодические колебания; мерилом времени в этих случаях будет соответственно пройденный путь (или перемещение), угол поворота или число колебаний.
         Первым устройством, с помощью которого человек измерял время, были солнечные Ч. Уже в середине 3-го тысячелетия до н. э. в качестве простейших Ч. использовался Гномон. В Древнем Египте и Греции время отсчитывали по солнечным Ч. с горизонтальными или вертикальными циферблатами (рис. 1). В Самарканде в 1-й половине 15 в. Улугбек построил солнечные Ч. высотой около 50 м. В средние века в Европе значительное распространение получили Ч. с вертикальным циферблатом. Такие Ч., например, сохранились в Москве на здании Историко-архивного института и старом здании МГУ. Наряду с солнечными Ч. уже во 2-м и 1-м тыс. до н. э. в Индии, Египте, Китае и Греции строились водяные Ч., которые показывали время и днём, и ночью. Простейшие водяные Ч. представляли собой сосуд со шкалой, проградуированной в единицах времени. В сосуд капля за каплей поступала вода из наполненного до краев (из внешнего источника) резервуара. Постоянство давления воды в резервуаре обеспечивало равномерное наполнение сосуда и равномерное повышение уровня воды в нём, отмечаемое по шкале. Около 150 до н. э. Ктесибий создал водяные Ч. (рис. 2), ставшие прототипом Ч., которые применялись во многих странах вплоть до 18 в. Равномерное движение положено в основу функционирования и некоторых других типов Ч., в том числе песочных.
         Первое упоминание о механических Ч. содержится в византийской антологии (конец 6 в.). Одни историки приписывают изобретение механических Ч. Пацификусу из Вероны (начало 9 в.), другие — монаху Герберту (впоследствии папа Сильвестр II), якобы в 996 сделавшему гиревые башенные Ч. для г. Магдебурга, которые не были механическими Ч. в современном понимании. Скорее всего это были водяные Ч. с использованием механизмов для приведения в действие дополнительных устройств, например механизма боя Ч., но не отсчёта времени. Достоверно известно, что простые по конструкции механические башенные Ч. были построены в Милане в 1335; в 1348—64 Донди в Италии создал Ч., которые наряду с отсчётом времени воспроизводили движение Солнца, Луны и пяти планет; в 1354 были установлены Ч. Страсбургского собора с курантами, календарём и движущимися фигурами. В России первые башенные Ч. были сделаны в 1404 в Московском Кремле монахом Лазарем Сербиным; они имели гиревые двигатели, механизм боя, планетарный механизм. В 15—17 вв. башенные Ч. начали устанавливать во многих городах России.
         В 14 в. появились первые механические Ч. со шпиндельным спуском (рис. 3). По сравнению с водяными Ч. шпиндельные Ч. были более совершенными, но всё же точность их хода не превышала 0,5 ч в сутки; до 16 в. они имели одну лишь часовую стрелку. Около 1510 нюрнбергский механик П. Хенлейн впервые применил вместо гирь стальную пружину и создал карманные Ч. со шпиндельным механизмом. Из-за несовершенства пружин и самого шпиндельного механизма, не имеющего собственного периода колебаний, показания этих Ч. сильно зависели от степени заводки пружины. В 1525 Я. Цех из Праги предложил фузею, или улитку, — приспособление для выравнивания усилия пружины во времени, что позволило повысить точность пружинных Ч. Шпиндельные Ч., хотя и имели невысокую точность, отличались высокой надёжностью и просуществовали до конца 19 в.
         Огромное значение для повышения точности Ч. имело открытие Г. Галилеем (См. Галилей) изохронности малых колебаний Маятника, т. е. независимости периода его колебаний от амплитуды. Галилей около 1640 предложил новый спусковой механизм, напоминающий современный хронометровый, но его идея не получила практического воплощения. Изобретателем современных механических Ч. по праву считается Х. Гюйгенс, который в 1657 применил маятник в качестве регулятора Ч. Маятниковые Ч. даже с несовершенным шпиндельным механизмом позволили снизить погрешность за сутки до 5—10 сек. В 1675 английский часовщик У. Клемент предложил заменить шпиндельный механизм на крючковый, представляющий собой простейшую разновидность анкерного спускового механизма (см. Анкер). Такой механизм сохранился до наших дней в простейших маятниковых Ч. типа ходиков (рис. 4). Новый шаг в совершенствовании Ч. связан с именем англичанина Дж. Грагама, который изобрёл несвободный анкерный механизм, имеющий значительно меньшие потери энергии, чем крючковый механизм Клемента. В 1675 Гюйгенс предложил в качестве регулятора колебаний использовать систему «баланс—спираль». Баланс — это колесо с массивным металлическим (обычно латунным) ободом, укрепленное на стальной оси; спираль — тонкая пружина, один конец которой крепится к оси баланса, а другой — к неподвижной опоре. Выведенная из состояния покоя система «баланс — спираль» совершает колебания вокруг своей оси; момент инерции баланса и жёсткость спирали определяют период колебаний системы. Такая колебательная система обладает собственным периодом колебаний; она достаточно надёжна при переноске и транспортировке Ч. В связи с применением балансового регулятора в Ч. с пружинным двигателем потребовалось дальнейшее совершенствование спусковых механизмов. До конца 19 в. в карманных Ч. широко применялся изобретённый Грагамом в начале 18 в. цилиндровый механизм. Со 2-й половины 19 в. получил распространение свободный анкерный механизм, до сего времени применяющийся во всех переносных, в том числе наручных и карманных, Ч. В связи с повышением точности часовых механизмов в конце 17 в. в карманных Ч. устанавливают минутные стрелки, а примерно с 1760 в Ч. стали применять секундные стрелки.
         Значительное влияние на точность хода маятниковых, особенно балансовых, Ч. оказывает изменение температуры окружающей среды. Погрешность хода маятниковых Ч. за сутки при изменении температуры на 1°С за счёт изменения длины маятника при стальном стержне составляет 0,5, а при деревянном — 0,2 сек; для балансовых Ч. со стальной спиралью около 11 сек, в основном за счёт изменения её жёсткости. В середине 18 в. было создано несколько типов маятников, температурная погрешность которых устранялась методом компенсации. Температурная компенсация балансового регулятора, основанная на применении биметалла, была предложена в 1761 французским часовым мастером П. Леруа. Такие балансы с компенсационными грузами по ободу применяются в современных морских хронометрах. Русский механик И. П. Кулибин в конце 18 в. предложил оригинальную конструкцию биметаллического баланса. В конце 19 — начале 20 вв. швейцарский физик Ш. Э. Гильом создал материалы с близким к нулю коэффициентом линейного расширения (для маятников) — Инвар, и с минимальным значением термоэластического коэффициента (для часовых спиралей) — Элинвар. Использование этих материалов в Ч. в сочетании с компенсационными устройствами практически устранило температурные воздействия на ход механических Ч. Так, например, Ч. с маятником из инвара даже без компенсационного устройства имеют температурную погрешность хода за сутки менее 0,05 сек на 1°С, а наручные Ч. со спиралью из элинвара — менее 0,5 сек, что вполне удовлетворяет требованиям, предъявляемым к Ч. широкого потребления.
         В России в 18 в. над совершенствованием Ч., в частности спускового механизма и способов температурной компенсации, работали выдающиеся механики Кулибин, Т. И. Волосков, инженер Л. Сабакин. Кулибин создал ряд уникальных Ч., в том числе хранящиеся в Эрмитаже Ч. в форме яйца, с фигурами, автоматически выполняющими во время боя сложные движения; карманные планетарные Ч. с семью стрелками, показывающими часы, минуты, секунды, дни недели, месяцы, фазы Луны, восход и заход Солнца. В 19 в. в России успешно работали над совершенствованием Ч. механики Д. И. Толстой, И. П. Носов; часовщики братья И. Н. и Н. Н. Бутеноп в 1851—52 полностью реконструировали Куранты Спасской башни Московского Кремля (см. Кремлёвские куранты).
         По назначению Ч. можно разделить (условно) на бытовые и специальные. В зависимости от условий использования различают бытовые Ч. наручные, карманные, настольные, настенные, уличные, башенные. В зависимости от назначения выделяют специализированные Ч. для подводного плавания, дорожные, антимагнитные и др. Имеется большая группа Ч. специального, служебного назначения: сигнальные, табельные, процедурные, программные и др. По типу колебательных систем, используемых в современных Ч., различают маятниковые, балансовые, камертонные, кварцевые и Квантовые часы. Поскольку в Ч. поддержание колебаний и индикация могут выполняться от разных энергетических источников и разными способами, то различают механические, электромеханические (или контактные), электронно-механические (или бесконтактные) и электронные Ч. (например, кварцевые с цифровой индикацией на жидких кристаллах). Особо выделяют синхронные или, как их иногда называют, электрические Ч., работающие от сети переменного тока. Такие Ч. по существу являются вторичными, а роль первичных Ч. выполняет генератор электростанции. Первичными Ч. могут быть также обычные Ч., как правило, повышенной точности, от которых с минутными или полуминутными интервалами по проводам передаются электрические импульсы вторичным Ч.
         Наиболее распространены (70-е гг. 20 в.) механические Ч. с механическим (пружинным, гиревым) приводом. Основные узлы современных механических Ч. (рис. 5) — двигатель, система колёс, ход или спусковой механизм, регулятор, стрелочный механизм и механизм заводки Ч. Пружина (двигатель) вращает барабан 1 (внутри которого она находится) и через него систему колёс 2—5, частота вращения которых определяется периодом колебаний системы «баланс — спираль» 6—7. Числа зубьев колёс и период колебаний баланса подбирают так, чтобы колесо 2 делало один оборот в час, а колесо 4 — один оборот в минуту; на их осях могут устанавливаться соответственно минутная и секундная стрелки. Практически же минутная стрелка закрепляется не на самой оси колеса 2, а на трибе 9, позволяющем переводить стрелку независимо от колёс 2—5. Колесо 2 через передачу 9—11— 12 приводит в движение колесо 10, на котором крепится часовая стрелка. При заводке вращение головки 15 (через вал 14, муфту 18 и колёса 17, 19 и 20) сообщается валу, на который наматывается пружина. При переводе стрелок вытягивают головку 15, муфта 18 с помощью рычагов 16 отводится от триба 17 и вступает в зацепление с переводными колёсами 13, вращение которых сообщается стрелкам. Современные Ч. оснащают часто дополнительным механизмом, показывающим числа и дни недели, а в крупных часах и месяцы. В наручных Ч. часто применяют противоударные устройства, предохраняющие их механизм от поломок. Всё большее распространение получают наручные механические Ч. с автоматическим подзаводом, в которых на механизме Ч. со стороны крышки расположен свободно качающийся груз в виде неуравновешенного сектора. При ношении Ч. на руке груз качается и через колёсную передачу с реверсивным устройством подзаводит пружину; за 10—12 часов пружина получает завод, обеспечивающий ход Ч. в течение 20 и более часов. Потребитель освобождается от необходимости заводить Ч. и, что особенно важно, они работают при более постоянном значении усилия заводной пружины, в результате чего Ч. имеют более высокую точность хода.
         Первые попытки применения электрических устройств в Ч. относятся к 30—40-м гг. 19 в. Первоначально получили распространение электромеханические маятниковые и балансовые Ч., в которых завод осуществлялся с помощью электромагнита, электродвигателя и т.д. Большое значение для дальнейшего развития электромеханических Ч. имели работы швейцарских часовщиков М. Гиппа и Л. Бреге, создавших Ч. с электроприводом. В электромеханических Ч. с электроприводом источник питания через контакты, управляемые маятником или балансом, периодически подключается к приводу, в результате чего в спусковом регуляторе устанавливаются автоколебания. Роль двигателя таких Ч. выполняет сама колебательная система, движение которой с помощью спец. механизма преобразуется в прерывистое вращательное движение стрелок.
         До середины 20 в. электромеханические Ч. были в основном крупногабаритными, маятникового, реже балансового типа. На усовершенствование конструкции малогабаритных, и прежде всего наручных, электромеханических балансовых Ч. значительное влияние оказало появление малогабаритных и энергоёмких источников тока, миниатюрных контактов. В начале 50-х гг. 20 в. появились балансовые наручные электромеханические Ч., выпущенные фирмами во Франции — «Лип» (Lip), в США — «Гамильтон» (Hamilton), электрическая цепь которых при подаче импульса балансу замыкалась механическими контактами.
         Замена механических контактов электронными ключами на транзисторах, туннельных диодах, интегральных микросхемах решила проблему повышения надёжности электронно-механических Ч. Современные наручные электронно-механические балансовые Ч. имеют точность хода ±15 сек в сутки, потребляют около 10 мка от источника тока напряжением 1,3—1,5 в. Такие Ч. с традиционными колебательными системами (осцилляторами) — маятником или «баланс — спиралью» — в отличие от контактных Ч. иногда называют бесконтактными. Быстродействие электронных устройств и возможность управлять ими при малых амплитудах осцилляторов обусловили развитие камертонных и кварцевых Ч., обладающих высокой точностью.
         В 70-х гг. 20 в. получили широкое распространение наручные и настольные камертонные Ч. с автономной работой без смены батареи от 1 до 2 лет при точности хода ±2 сек в сутки. Первый камертонный регулятор с контактным прерывателем был создан А. Гийе в 1915. В 1919 У. Эклс и Ф. Джордан (Великобритания) и А. Абрахам и Э. Блох (Франция) предложили схему лампового камертонного регулятора с электромагнитной системой привода. Камертонные регуляторы на транзисторах для наручных Ч. впервые были изготовлены фирмой «Булова уотч компани» (Bulova Watch Со) в США в 1950; в СССР камертонные Ч. были выпущены в 1962 на 2-м Московском часовом заводе. В этих Ч. применен храповой механизм для преобразования колебаний камертона во вращение стрелок. Одна из схем электромеханических камертонных Ч. представлена на рис. 6. При колебаниях камертона в обмотке освобождения наводится эдс, которая открывает транзистор, в результате чего в импульсную обмотку поступает ток от источника питания. Частота колебаний камертона — 360 гц.
         В электронно-механических Ч. с относительно высокочастотными (порядка 32 кгц) кварцевыми осцилляторами электрические импульсы спускового регулятора управляют работой шагового или синхронного электродвигателя или синхронизируют работу двигателей постоянного тока. В этих случаях схема управления состоит из электронного делителя частоты, схемы формирования импульсов и усилителей. Большинство кварцевых Ч. имеет шаговый электродвигатель. Регулировка хода Ч. осуществляется с помощью триммера в цепи кварцевого генератора. Впервые схема кварцевых Ч. была предложена В. А. Маррисоном (Великобритания) в 1929; в конце 70-х гг. такие Ч. выпускают многие фирмы, например в Швейцарии «Патек Филипп Эбош» (Patek Philippe Ebauches), «Омега» (Omega); в США — «Гамильтон»; в Японии — «Сэйко» (Seiko). Высокотемпературная стабильность, повышенная добротность и устойчивость кварцевых генераторов к внешним динамическим воздействиям обеспечивают точность бытовых малогабаритных электронно-механических Ч. около 2 сек, а в крупногабаритных прецизионных — 0,001 сек в сутки.
         Кварцевые наручные Ч. получили распространение благодаря возможностям современной технологии изготовления полупроводников и созданию интегральных микросхем. Ч. с электронной схемой и цифровой индикацией на жидких кристаллах (См. Жидкие кристаллы) или светодиодах называются электронными. Электронная часть этих Ч. содержит, кроме кварцевого генератора, делители частоты (счётчик), дешифраторы (рис. 7а). В СССР выпускаются (1977) кварцевые часы как со стрелочной, так и с цифровой индикацией (рис. 7б).
         Для согласования показаний группы Ч. применяются системы единого времени. Они состоят из первичных высокоточных Ч. и группы вторичных Ч., соединённых с первичными каналами связи. Первичные Ч. управляют работой вторичных Ч., которые могут быть обычными электромеханическими Ч. или счётчиками электрических импульсов. Для повышения точности и надёжности системы единого времени вторичные Ч. часто делают автономными (самостоятельно идущими), ход которых периодически корректируется или синхронизируется сигналами точного времени от первичных Ч.
         Современные Ч. обеспечивают широкий диапазон по точности в зависимости от практических потребностей измерения времени. Так, например, атомные эталоны, используемые, в частности, при космических исследованиях, имеют относительную погрешность около 10―13; высокоточные маятниковые Ч. порядка 10―11; кварцевые морские хронометры 10―8 (т. е. точность их хода составляет несколько тысячных долей сек за сутки); наручные кварцевые часы имеют точность хода в пределах 2 сек в сутки, камертонные и балансовые электронно-механические Ч. до 15 сек в сутки; механические бытовые Ч. высокого качества до 5 сек, а среднего качества 30—60 сек в сутки; механические будильники 1—1,5 мин в сутки.
         Лит.: Аксельрод З. М., Теория и проектирование приборов времени, Л., 1969; Дроздов Ф. В., Приборы времени, М., 1940; Баутин Н. Н., Динамические модели свободных часовых ходов, в кн.: Памяти А. А. Андронова, М., 1955; Шполянский В. А., Чернягин Б. М., Электрические приборы времени, М., 1964; Константинов А. И., Флеер А. Г., Время, М., 1971; Andrade J. F. С., Horlogerie et chronométrie, P., 1924; Defossez L., Théorie générale d’horlogerie, t. 1, Le Chaux-de-Fonds, 1950; Haag J., Les mouvements vibratoires, t. 1. P., 1952.
         В. И. Денисов, Б. М. Чернягин.
        
        Рис. 1. Солнечные часы: а — горизонтальные; б — вертикальные; 1 — стержень (пластина), тень от которой служит указателем времени на циферблате 2.
        
        Рис. 4. Схема механизма маятниковых часов с крючковатым спуском: 1 — поводок; 2 — ось скобы; 3 — скоба; 4 — спусковое колесо; 5 — основная колёсная передача; 6 — колёсная передача стрелок; 7 — стрелки; 8 — гиревой привод; 9 — маятник.
        
        Рис. 3. Шпиндельный спуск: 1 — шпиндель; 2 — грузы шпинделя; 3, 4 — палеты; 5 — спусковое колесо; 6 — триб.
        
        Рис. 5. Схема механизма наручных механических часов: 1 — заводной барабан; 2, 3, 4 — основная зубчатая передача; 5 — спусковое колесо; 6 — баланс; 7 — спираль; 8 — анкерная вилка; 9 — триб минутной стрелки; 10 — часовое колесо; 11 — триб вексельного колеса; 12 — вексельное колесо; 13 — переводные колёса; 14 — заводной вал; 15 — заводная головка; 16 — переводной и заводной рычаги; 17 — заводной триб; 18 — кулачковая муфта; 19 — заводное колесо; 20 — барабанное колесо.
        
        Рис. 6. Схема камертонных часов: Т — транзистор; R — резистор; C — конденсатор; L1 — обмотка освобождения; L2 — импульсная обмотка; E — источник питания (гальванический элемент); 1 — камертон; 2 — храповый механизм; 3 — колёсная передача; 4 — стрелки (часовая, минутная, секундная).
        
        Рис. 7. Кварцевые наручные часы с цифровой индикацией на жидких кристаллах: а — блок-схема; б — внешний вид; К — кристалл кварца; Г — генератор электрических колебаний; С — триммер; f — частота колебаний; Дш — дешифратор.
        
        Рис. 2. Клепсидра (водяные часы): а — внешний вид; б — разрез; 1 — трубка подачи воды из постороннего источника; 2 — фигура, из глаз которой вода капля за каплей равномерно поступает по трубке 3 в резервуар 4; 5 — пробка с укрепленной на ней фигурой 6, показывающей палочкой время на цилиндрическом циферблате 7; 8 — трубка сифона, по которой в конце суток вода вытекает из наполненного резервуара 4, поворачивая цилиндр 7 вокруг вертикальной оси на 1/365 часть окружности.
II Часы́ (лат. Horologium)
        созвездие Южного полушария неба, наиболее яркая звезда 3,9 визуальной звёздной величины (См. Звёздная величина). Наилучшие условия для наблюдений в ноябре, частично видно в южных районах СССР. См. Звёздное небо.

Источник: Часы

маятник

МА́ЯТНИК -а; м.
1. Качающийся стержень с расположенным внизу центром тяжести, верхним концом свободно прикрепленный к неподвижной точке. Остановить м. Равномерное движение маятника. Тяжелый м. Настенные часы с маятником. Качаться, как м. (взад и вперед или из стороны в сторону).
2. Колесо, регулирующее ход карманных и ручных часов равномерным движением вокруг своей оси.
Ма́ятниковый, -ая, -ое. М-ые часы.
Ма́ятниковый прибор. Физ. Прибор для определения ускорения силы тяжести, основной частью которого является свободно качающийся маятник.
* * *
ма́ятник
1) математически маятник — материальная точка, совершающая под действием силы тяжести колебательные движения. Приближённо такой маятник может быть осуществлён в виде тяжёлого груза достаточно малых размеров, подвешенного на нити. Период колебания маятника , где l — длина нити, — ускорение свободного падения. 2) Физически маятник — тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, не проходящей через центр тяжести тела. Период колебаний , где I — момент инерции тела, m — масса тела, l — расстояние его центра тяжести С от оси вращения О. Приведённые формулы справедливы лишь при малых амплитудах колебаний. Свойствами маятника пользуются в часах и ряде других приборов.
* * *
МАЯТНИК
МА́ЯТНИК,
1) математический маятник — материальная точка (см. МАТЕРИАЛЬНАЯ ТОЧКА), совершающая под действием силы тяжести колебательные движения. Приближенно такой маятник может быть осуществлен в виде тяжелого груза достаточно малых размеров, подвешенного на нити.
2) Физический маятник — тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, не проходящей через центр тяжести тела. Приведенные формулы справедливы лишь при малых амплитудах колебаний. Свойствами маятника пользуются в часах и ряде других приборов.

Источник: маятник