Магазин форменной и спецодежды

Объектив для микроскопа 40х/0,65 SP беск/0,17 (М3)
5 070 р.
Объектив для микроскопа 40х/0,65 SP беск/0,17 (М3)

Объектив 40х/0,65 SP беск/0,17 (М3)

Объектив для микроскопов Микромед 3 с длиной тубуса "бесконечность" (парфокальная высота h=45мм, стандарт DIN).

Отличительная особенность: пружинящая оправа, планахромат.

Характеристики

Увеличение, крат 40
Апертура 0,65
Рассчитан на тубус, мм "бесконечность"
Рассчитан на толщину покровного стекла, мм 0,17
Рабочее расстояние, мм 0,68

Субституты (товары заменители)
Микроскоп школьный Эврика 40х-400х в кейсе (лайм)
Микроскоп школьный Эврика 40х-400х в кейсе (лайм) Монокулярный микроскоп Эврика 40х-400х с 3 ахроматическими объективами в комплекте. Окуляр 10х. 2 светодиодных осветителя проходящего и отраженного света.Питание от трёх батареек АА или адаптера 2...
5 290 р.
Светофильтр матовый D 32mm, 1.6-1.8 mm
Светофильтр матовый D 32 мм, 1.6-1.8мм Диаметр D 32 мм, толщина 1.6-1.8мм. Светофильтры для микроскопов зачастую применяются для наблюдений за прозрачными или бесцветными препаратами. При занятии микрофотографии, к примеру, светофильтры помогут ва...
150 р.
Окуляр 10х/22 (D 30 мм)
Окуляр 10х/22 Окуляр для микроскопов Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед МЕТ, Микромед ПОЛАР 1, Микромед ПОЛАР 2, Микромед ПОЛАР 3. Окуляр совместим с микроскопами: Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед МЕТ, Микромед П...
2 440 р.
Набор насекомых в акриле Микромед №2
Набор насекомых 2 (Экспонаты в акриле) Набор насекомых для изучения под стерео-микроскопом: цикада черная, пчела, сверчок, бронзовка. Набор насекомых для изучения под стерео-микроскопом . Экспонаты запаяны в высококачественный прозрачный акрил ...
1 480 р.
Микроскоп школьный Микромед Эврика 40х-1280х с видеоокуляром в кейсе
Микроскоп школьный Эврика 40х-1280х с видеоокуляром в кейсе Школьный микроскоп в кейсе. Монокуляр . Увеличение от 40 до 1280 крат. 3 объектива и 2 окуляра. Встроенные светодиодные осветители осветители проходящего и отраженного света. Работа от ...
12 400 р.
Микроскоп школьный Микромед Эврика 40х-1280х в кейсе
Микроскоп школьный Эврика 40х-1280х в текстильном кейсе Монокулярный микроскоп . В комплекте 3 объектива и 2 окуляра. Увеличения до 1280 крат. Светодиодные источники света (просвечивающее/отражённое освещение). Текстильный кейс с жёсткими бокови...
7 450 р.
Набор насекомых в акриле Микромед №1
Набор насекомых 1 (Экспонаты в акриле) Набор насекомых для изучения под стерео-микроскопом: скорпион, жук-скакун, жук-листоед, муравьи. Набор насекомых для изучения под стерео-микроскопом. Экспонаты запаяны в высококачественный прозрачный акрил ...
1 480 р.
Микроскоп тринокулярный Микромед 2 вар. 3-20
Микроскоп биологический Микромед 2 (вар. 3-20) Тринокулярная насадка, увеличение 40-1000 крат, объективы-ахроматы, встроенный осветитель с регулировкой яркости, регулируемая полевая диафрагма. Микроскоп МИКРОМЕД 2 вар. 3-20 предназначен для н...
41 290 р.
Микроскоп Микромед 100x-900x в кейсе
Микроскоп Микромед 100x-900x в кейсе Детский микроскоп в кейсе. Монокуляр . Увеличение 100/400/900. 3 объектива. Встроенный осветитель. Питание от 2х элементов АА (в комплект не входят).В комплекте с микролабораторией. Этот микроскоп с ув...
1 890 р.
Окуляр для микроскопа 12.5х/15 (D 30 мм)
Окуляр 12.5х/15 D30 мм Окуляр для микроскопов Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед МЕТ, Микромед ПОЛАР 1, Микромед ПОЛАР 2. Окуляр совместим с микроскопами: Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед МЕТ, Микромед ПОЛАР 1, М...
2 030 р.
Микроскоп стерео Микромед MC-1 вар. 1С (1х/2х/4x)
Микроскоп стерео МС-1 вар.1C (1х/2х/4х) Рабочее расстояние 57 мм, источник света - встроенный осветитель отраженного и проходящего света, в комплекте 3 увеличения объективов. Микроскоп стереоскопический МИКРОМЕД МС-1 вар. 1С (1х/2х/4х) предна...
13 960 р.
Окуляр для микроскопа 10х/18 (D 23,2) Гюйгенса
Окуляр 10х/18 (D 23,2) Гюйгенса Окуляр 10х для учебных микроскопов Микромед С-11, Микромед С-12, Микромед С-13. Как известно, общее увеличение микроскопа – это произведение увеличения объектива на увеличение окуляра. Порой случается, что при о...
650 р.
Объектив для микроскопа 60х/0,85 160/0,17 (М1)
Объектив 60х/0,85 160/0,17 (М1) Объектив для микроскопов Микромед 1 с длиной тубуса 160 мм (парфокальная высота h=45мм, стандарт DIN). Отличительная особенность: ахромат, пружинящая оправа. Характеристики Увеличение, крат 60 Апертура ...
2 740 р.
Микроскоп Микромед MC-2-ZOOM вар.1А
Микроскоп стерео МС-2-ZOOM вар.1A Бинокуляр. Увеличение 10-40 (при дополнительной комплектации 2,5-160). Рабочее расстояние 85 мм (при дополнительной комплектации 28-172 мм). Источник света - естественное освещение. Стереоскопический микроскоп ...
27 380 р.
Микроскоп бинокулярный Микромед 2 вар. 2-20
Микроскоп биологический Микромед 2 (вар. 2-20) Бинокулярная насадка, увеличение 40-1000 крат, объективы-ахроматы, встроенный осветитель с регулировкой яркости, регулируемая полевая диафрагма. Микроскоп МИКРОМЕД 2 вар. 2-20 предназначен для на...
39 850 р.
Окуляр для микроскопа 10x/18 со шкалой (D 23.2 мм)
Окуляр 10х/18 со шкалой Окуляр с измерительной шкалой для микроскопов Микромед С-11, Микромед С-12, Микромед С-13, Микромед С-1, Микромед Р-1, Микромед 1, Микромед 2. Окуляр совместим с микроскопами: Микромед С-11, Микромед С-12, Микромед С-13...
2 640 р.
Микроскоп Микромед С-13
Микроскоп биологический Микромед С-13 Монокулярный микроскоп . 3х позиционный револьвер объективов. В комплекте 3 ахроматических объектива и 2 окуляра. Увеличение до 800х Освещение - зеркало с двумя отражающими поверхностями. Грубая фокусировка....
4 280 р.
Окуляр для микроскопа 10x/22 со шкалой (D 30 мм)
Окуляр 10х/22 со шкалой Окуляр с измерительной шкалой для микроскопов Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед МЕТ, Микромед ПОЛАР 1, Микромед ПОЛАР 2. Окуляр совместим с микроскопами: Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед ...
2 640 р.
Окуляр для микроскопа 10x/22 с сеткой (D 30 мм)
Окуляр 10х/22 с сеткой Окуляр с измерительной сеткой для микроскопов Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед МЕТ, Микромед ПОЛАР 1, Микромед ПОЛАР 2. Окуляр совместим с микроскопами: Микромед 3, Микромед 3 ЛЮМ, Микромед И, Микромед М...
2 640 р.
Объектив для микроскопа 20х/0,4 SP 160/0,17
Объектив 20х/0,4 SP 160/0,17 Объектив полупланахромат для микроскопов Микромед с длиной тубуса 160 мм (парфокальная высота h=45мм, стандарт DIN). Отличительная особенность: полупланахромат. Характеристики Увеличение, крат 20 Апертура ...
3 900 р.
Товары этого производителя
Выбрать, заказать и купить Объектив для микроскопа 40х/0,65 SP беск/0,17 (М3) можно в интернет-магазине Форма-одежда. Описание с фотографиями и отзывы покупателей - все для вашего удобства выбора. В Москву, Московскую область (Подмосковье) его доставит курьер, а почтой России или другими компаниями отправляем в Санкт-Петербург (СПб), Астрахань, Барнаул, Белгород, Брянск, Великий Новгород, Владивосток, Волгоград, Вологду, Воронеж, Екатеринбург, Иваново, Ижевск, Йошкар-Олу, Иркутск, Казань, Казахстан, Калининград, Калугу, Кемерово, Киров, Краснодар, Красноярск, Курск, Липецк, Магадан, Магнитогорск, Набережные Челны, Нижний Новгород, Новокузнецк, Новороссийск, Новосибирск, Норильск, Омск, Орел, Оренбург, Пензу, Пермь, Псков, Ростов-на-Дону, Рязань, Самару, Саратов, Севастополь, Симферополь, Смоленск, Сочи, Ставрополь, Тверь, Тольятти, Томск, Тулу, Тюмень, Улан-Удэ, Ульяновск, Уфу, Хабаровск, Чебоксары, Челябинск, Якутск, Ялту, Ярославль и другие регионы. Также возможна доставка в страны ближнего и дальнего зарубежья.

ОБЪЕКТИВ

ОБЪЕКТИВ

       
(от лат. objectus — предмет), обращённая к объекту часть оптич. системы или самостоят. оптич. система, формирующая действительное изображение оптическое объекта. Это изображение либо рассматривают в окуляр, либо получают на плоской (реже на искривлённой) поверхности фотогр. светочувствит. слоя, фотокатода передающей телевиз. трубки или электронно-оптического преобразователя, матового стекла или экрана. Конструктивно О. делятся на три класса: наиб. распространённые линзовые (рефракторы, диоптрические) , зеркальные (рефлекторы, катоптрические), зеркально-линзовые (катадиоптрические; подробно о них см. в ст. (см. ЗЕРКАЛЬНО-ЛИНЗОВЫЕ СИСТЕМЫ)). По назначению О. разделяют на: О. зрительных труб и телескопов, к-рые дают уменьшенное изображение; О. микроскопов, дающие увеличенное изображение; фотогр. и проекц. О., дающие в зависимости от конструкции и способа применения уменьшенное или увеличенное изображение.
Важнейшими оптич. хар-ками О. являются: фокусное расстояние, к-рое при заданном удалении объекта от О. определяет увеличение оптическое О.; диаметр входного зрачка О.; относительное отверстие и выражающаяся через него светосила О.; поле зрения О. Кач-во формируемого О. изображения характеризуется разрешающей способностью О., коэфф. передачи контраста, коэффициентами интегр. и спектр. пропускания света, коэфф. светорассеяния в О., падением освещённости по полю изображения.
Объективы зрительных труб и телескопов. Расстояние до объектов, рассматриваемых в зрит. трубы и телескопы, предполагается очень большим. Поэтому объекты характеризуют не линейными, а угл. размерами. Соответственно хар-ками О. данной группы служат угл. увеличение g, УГЛ. разрешающая способность а и угол поля зрения 2w=2w'/g, где 2w' — угол поля зрения следующей за О. части оптич. системы (обычно окуляра). В свою очередь g=f1/f2, где f1 — фокусное расстояние О., f2 — переднее фокусное расстояние последующей части системы. Разрешающая способность О. в угл. секундах определяется по ф-ле: a"=120"/D, где D — выраженный в мм диаметр входного зрачка О.
О. измерит. и наблюдат. зрит. труб и геодезич. приборов имеют входные зрачки диаметром неск. (см. МАЛАЯ ВЕЛИЧИНА ПОЛЯ ЗРЕНИЯ) (не более 10— 15°, обычно меньше) большинства зрит. труб позволяет использовать О. сравнительно простых конструкций; напр., линзовые О. состоят, как правило, из двух склеенных линз (в них исправляют лишь сферическую аберрацию и хроматическую аберрацию), Менее употребительны О. из трёх и более линз, в к-рых устранены также кома и нек-рые др. аберрации оптических систем. С 70-х гг. 20 в. в геодезич. приборах начали использоваться менисковые системы. Относит. отверстия О. наблюдат. труб и геодезич. приборов варьируют в широких пределах (примерно от 1 : 20 до 1 : 5).
Диаметры линзовых и зеркально-линзовых О. телескопов =0,5—1 м (макс. D=l,4 м). В телескопах-рефракторах используются двухлинзовые О. (также с исправлением лишь сферич. и хроматич. аберраций); в астрографах, предназначенных для фотографирования звёздного неба,— трёх- и четырёхлинзовые О.; в астрографах, как правило, исправляются все аберрации, за исключением кривизны поля. Угол поля зрения О. астрографов достигает 6°; у двухлинзовых О. рефракторов он обычно тем меньше, чем больше их диаметр, составляя у самых больших менее 1°. Относит. отверстия больших рефракторов 1 : 20 — 1 : 10, у астрографов они больше и доходят до 1 : 1,4— 1 : 1,2. В телескопах, построенных по т. н. системе Шмидта, и в менисковых системах Максутова поле зрения достигает 5° при относит. отверстии = 1 : 3. Наибольший О. зеркального телескопа (рефлектор с параболич. зеркалом (БТА) Спец. астрофиз. обсерватории АН СССР на Сев. Кавказе) имеет D=6 м. Поле зрения О. самых больших рефлекторов не превышает неск. угл. минут; у О. рефлекторов, построенных по т. н. системе Ричи — Кретьена (с гиперболическим гл. зеркалом), поле зрения доходит до 1°. Аберрации подобных О. (кроме хроматических и сферических) значительны и исправляются введением дополнительных (коррекционных) линз и зеркал, т. н. компенсаторов.
К астр. О. относятся также О., применяемые в системах наблюдения за ИСЗ и для фотографирования метеоров. В них исправляются все аберрации, за исключением кривизны поля.
Фотографические объективы (к ним относятся и О., применяемые при киносъёмке и репродуцировании) отличаются от О. зрит. труб тем, что формируемые ими изображения должны быть резкими до края фотоплёнки (или иного приёмника), размеры к-рой могут быть сравнительно велики. Поэтому угол поля зрения резкого изображения у таких О. значительно
Рис. 1. Линзовые фотографические объективы .
больше, чем у О. зрит. труб и телескопов. Чтобы добиться резкости и высокого контраста неискажённого плоского изображения при больших углах поля зрения, необходимо тщательно исправлять все осн. аберрации, что усложняет О. На рис. 1 приведено неск. схем наиб. типичных линзовых фотообъективов.
По назначению фотогр. О. разделяют на О., используемые в любительской и профессиональной фотографии и кинематографии, репродукционные, телевизионные, аэрофото-съёмочные и др., а также О. для невидимых областей спектра — ИК и УФ. Среди О. одного и того же назначения различают нормальные (универсальные), светосильные, широкоугольные и длиннофокусные (телеобъективы). Наиболее распространены нормальные О., обеспечивающие резкое плоское изображение при умеренно больших относит. отверстии и поле зрения. Их фокусные расстояния =40—150 мм, относит. отверстия 1:4—1:1,8, угол поля зрения для О. с фокусным расстоянием =50 мм ок. 50°. Светосильные О. имеют относит. отверстия от 1:1,8 до 1:0,9. Угол поля зрения широкоугольных О. превышает 60° и доходит у нек-рых из. них до 180° (напр., показанный на рис. 1 объектив Гилля имеет поле зрения 180° при относит. отверстии 1 : 22). Особенно важную роль такие О. играют в аэрофотосъёмке. Фокусные расстояния широкоугольных О. обычно от 100 до 500 мм; их относит. отверстия характеризуются ср. и малыми значениями (1 : 5,6 и ниже). В них трудно исправлять такие аберрации, как дисторсия, кривизна поля и астигматизм. Значит. искажения эффекта перспективы характерны для изображений, формируемых такими О.
К длиннофокусным относят фотогр. О. с углом поля зрения обычно менее 30° и значениями фокусных расстояний =100—2000 мм. Такие О. применяют для съёмки удалённых объектов в крупном масштабе; их относит. отверстия не превышают 1:5,6—1:4,5.
Широко применяются т. н. панкратические О. с переменным фокусным расстоянием (таковы мн. киносъёмочные О.); изменение этого расстояния осуществляется перемещением отд. компонент О., при к-ром его относит. отверстие обычно остаётся неизменным. Подобные О., в частности, позволяют менять масштаб изображения без изменения положения объекта и плоскости изображения (при смещении компонент О. и изменении его фокусного расстояния меняется положение главных плоскостей О.; (см. КАРДИНАЛЬНЫЕ ТОЧКИ). По оптико-коррекционным св-вам панкратич. О. делятся на: 1) варио-объективы, оптич. схема к-рых корригируется в отношении всех аберраций как единое целое; 2) трансфокаторы — системы, состоящие из собственно О. и устанавливаемой перед ним афокальной насадки, аберрации к-рой исправляются отдельно. Получение изображений высокого кач-ва в панкратич. О. достигается за счёт увеличения числа линз и компонент. Такие О.— сложные системы, состоящие из 11—20 линз. Для уменьшения потерь света совр. фотогр. О. просветляют (см. ПРОСВЕТЛЕНИЕ ОПТИКИ).
Проекционные О. однотипны с фотографическими и отличаются от них в принципе лишь обратным направлением лучей света. Из них выделяют О. для диапроекции в проходящем свете и О. для эпипроекции в отражённом свете (см. ПРОЕКЦИОННЫЙ АППАРАТ). Особую подгруппу, также относимую к фотообъективам, составляют репродукционные О., применяемые для получения изображений плоских предметов, чертежей, карт и т. п. Проекционные О., репродукционные О. и фотообъективы в случаях, когда они расположены близко к объекту, характеризуют не угловым, а линейным увеличением (масштабом изображения в собственном смысле), линейными размерами поля зрения и числовой апертурой. В этом отношении они сходны с О. микроскопов.
Объективы микроскопов всегда находятся в непосредств. близости от объекта. Их фокусные расстояния невелики: от 30—40 мм до 2 мм. К основным оптич. хар-кам О. микроскопов относятся: числовая апертура А, равная n1sih1, где n1 — показатель преломления среды, в к-рой находится объект, u1 половина угла раствора светового пучка, попадающего в О. из точки объекта, лежащей на оптич. оси О.; линейное увеличение b; линейные размеры 2l поля зрения, резко отображаемого О.; расстояние от плоскости объекта до плоскости изображения. Значением А определяется как освещённость изображения, прямо пропорциональная А2, так и линейный предел разрешения микроскопа, т. е. наименьшее
Рис. 2. Типичная оптич. схема объектива микроскопа.
различаемое расстояние на объекте. Если объект находится в воздухе (n=1, «сухой» О.), то А не может превышать единицы (фактически не более 0,9). Помещая объект в сильнопреломляющую (n>1), т. н. иммерсионную, жидкость, примыкающую к поверхности первой линзы О., добиваются того, что А достигает значений 1,4—1,6 (см. ИММЕРСИОННАЯ СИСТЕМА). У совр. микроскопов b доходит до 90—100; полное увеличение микроскопа Г=bГ', где Г' — угл. увеличение окуляра. Линейное поле зрения 2l связано о диаметром D диафрагмы поля зрения окуляра соотношением 2l=D/b. По мере увеличения A и b растёт сложность конструкции О., т. к. требования к кач-ву изображения очень велики: разрешающая способность О. практически не должна отличаться от разрешающей способности для идеального (безаберрационного) О. Этому условию удовлетворяют конструкции наиб. совершенных О. микроскопов — т. н. планахроматов и планапохроматов. На рис. 2 показана типичная схема планапохромата.
Особые группы О. составляют: О. спектральных приборов, во многом близкие фотообъективам; спец. О. для использования с лазерами и т. д.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ОБЪЕКТИВ

(от лат. objectus - предмет)- оптич. система (или её часть), обращённая к объекту наблюдения или съёмкии создающая реальное, повёрнутое на 180° относительно объекта изображение. <В зависимости от типа используемых оптич. деталей О. разделяют на линзовые, <зеркальные, зеркально-линзовые и киноформные. Наиб. распространение получилилинзовые О., обладающие широкими возможностями для получения разнообразныххарактеристик, что достигается увеличением кол-ва линз. Преимуществом зеркальныхО. является принципиальное отсутствие хроматических аберраций и, <как следствие, возможность использования для работы в области спектра, <ограниченной лишь отражающей способностью зеркальных покрытий. Принципиальныйнедостаток зеркальных и зеркально-линзовых О. - экранирование (затенение)центр. части входного зрачка, за счёт чего ухудшается качество изображенияи возникают дополнит. потери света. В киноформных О. наряду с линзами изеркалами или без них используются киноформы - синтезиров. фазовыеголограммы, аналогичные по своим аберрац. свойствам в монохроматич. светелинзам с асферич. поверхностями. Хроматич. аберрации киноформов не зависятот свойств материала, из к-рого они выполнены, а определяются (аналогично дифракционным решёткам )пространственной частотой структуры и спектральнымдиапазоном. Необычные дисперсионные свойства киноформов позволяют в сочетаниис линзами, выполненными из обычных марок, оптических стёкол, получатьО. апохроматы, обладающие лучшим качеством изображения и более простойконструкцией, чем аналогичные О., содержащие кристаллич. среды и особыемарки оптич. стекла. Применение киноформных О., не содержащих обычных линзи зеркал, возможно лишь в сочетании с лазерами, обладающими высокой монохроматичностью.
Фотографический О. или аналогичные О. <киносъёмочных и телевизионных камер, приборов ночного видения, тепловизоровсоздают преим. уменьшенные изображения удалённых объектов на слое светочувствит. <материала или на фотоэлектрич. приёмнике - телевизионной трубке, матрицеили линейке фотоприёмников, фотокатоде электронно-оптич. прибора. Масштабизображения пропорционален f' - фокусному расстоянию О., а освещённостьобратно пропорц. квадрату диафрагменного числа К (К= f'/D, где D- диам. входного зрачка). Величину 1/К наз. относительным отверстием, <а её квадрат - светосилой. Предельное значение диафрагменного числа, <при к-ром возможно исправление аберраций, составляет K = 0,5, реальнодостигнутые значения K0,6,подавляющее большинство фотогр. О. имеют 3 > К 1,2.Фотогр. разрешающая способность N ф фото- и кинообъективовзависит от коррекции аберраций, а также от разрешающей способности Nc светочувствит. <слоя и может быть вычислена по приближённой ф-ле 1/N ф 1/N0+ 1/Nc, где N0 - визуальная разрешающаяспособность О. Для совр. фотообъективов N ф достигает50 мм -1 в центре поля и 30 мм -1 для края при съёмкена фотоплёнке КН-1 (кинонегатив). Часть пространства или плоскости, точкик-рой изображаются О. с требуемым качеством, характеризуются угловым полем- плоским углом соответствующим телесному углу, соосному с оптич. осью и вершиной в центревходного зрачка. Угл. поле О. совр. фотоаппаратов составляет от 40° до70°, аэрофотосъёмочных О. достигает 140°. На рис. 1 представлена оптич. <схема совр. О. "Минитар" (f' = 32 мм, К =2,8;=68°) малогабаритного фотоаппарата с форматом кадра 24 мм X 36 мм. О. телевизионныхкамер и приборов ночного видения не отличаются принципиально от фотообъективов. <В О. тепловизоров, работающих в дальней (8 - 14 мкм) ИК-области спектра, <используются оптич. материалы, обладающие показателями преломления .2 (германий, селенид цинка, халькогенидные стёкла), что позволяетуменьшить кол-во линз по сравнению с аналогичными по характеристикам О. <для видимой или ближней ИК-областей спектра. Малая дисперсия Ge позволяетсоздавать О., все линзы к-рых выполнены из этого материала, не принимаяспец. мер для устранения хроматич. аберраций. Использование асферич. поверхностейгерманиевых линз позволяет сократить кол-во линз в О., имеющих К 1,5,до двух.

О. микроскопа - важнейшая часть его оптич. <системы, создающая увелич. изображение объекта наблюдения в передней фокальнойплоскости окуляра. Масштаб изображения обратно пропорционален фокусномурасстоянию О. и составляет примерно от 1,5 до 100 крат. Предел разрешениямикроскопа - мин. расстояние между центрами светящихся точек объекта, видимых раздельно, <определяется дифракц. явлениями в О. и вычисляется по ф-ле где А - числовая апертура О., равная произведению показателя преломлениясреды, находящейся между объектом и О., на синус апертурного угла. ДляО. микроскопов 0,03 А 1,4;диаметр поля изображения - от 18 мм до 32 мм. Простейшие О. микроскоповсоздают изображение, обладающее значит. кривизной, в результате чего припереходе от наблюдения центр. части поля к его краям необходима перефокусировка.
При фотографировании диаметр резкого изображениясокращается до 6 - 10 мм. Кривизну изображения в т. н. план-объективахустраняют существ. усложнением конструкции: на рис. 2 представлена схемавысокоапертурного ( А= 1,25) планахроматич. О. для металлографич. <микроскопа.

Особую группу образуют панкратические О.(иногда неточно наз. трансфокаторами), фокусное расстояние к-рыхможет плавно изменяться в широких пределах путём перемещения отдельныхлинз или групп их вдоль оптической оси. Такие О. применяются в цветныхпередающих камерах телевидения, в кино- и видеокамерах, а также и в фотоаппаратах. <Соотношение между макс. и мин. значениями фокусного расстояния достигает40 у О. телекамер, (6 - у О. кино- и видеокамер, 3 - у фотогр. О. Кол-волинз в панкратич. О. доходит до 30. Для уменьшения потерь света совр. О. <просветляют (см. Просветление оптики).
О. зрительных труб, биноклей и телескоповсоздают промежуточное изображение удалённых объектов в передней фокальнойплоскости окуляра. При диаметрах О., не превышающих 100 мм, наиб. распространённымявляется О., состоящий из двух склеенных линз. При больших диаметрах линзыне склеиваются. Начиная с диам. 500 - 800 мм используются зеркальные О.,что обусловлено трудностями в получении однородных по показателю преломлениякрупных заготовок оптич. стекла. Макс. диаметр (6 м) имеет О. телескопаСпециальной астр. обсерватории АН СССР на Северном Кавказе. Диафрагменныечисла О. телескопов, как правило, К 3;угл. поля предел разрешения - мин. угол (всекундах) между светящимися равнояркими точками (напр., звёздами), к-рыевидны раздельно, определяется по ф-ле:=140/D, где D измеряется в мм.
Проекционные О. создают увелич. изображенияплоских объектов (кинокадров, слайдов, микрофильмов, кинескопов телевизоров)на отражающих и иросветных экранах. Оптич. системы этих О. аналогичны фотогр. <О., но обычно обладают меньшими угл. полями и меньшими диафрагменными числами( К 1,8).
Репродукционные О., используемые в репрографиии для фотолитографии при произ-ве микроэлектронных схем, создают уменьш. <изображения плоских оригиналов чертежей, текстов, рисунков, шаблонов; обладаютповышенной разрешающей способностью, определяемой дифракцией и достигающей1500 мм -1 для фотолитографич. О. и 150 мм -1 для репрографич. <О.

Столь высокие значения достигаются у первыхза счёт существенного усложнения оптич. системы, у вторых за счёт сравнительномалых угл. полей и числовой апертуры. Оптическая схема О. для фотолитографиис разрешением ~ 1000 мм -1 на поле диам. 14 мм представлена нарис. 3.

Лит.: Тудоровский А. И., Теорияоптических приборов, 2 изд., ч. 1 - 2, М. - Л., 1948 - 52; Слюсарев Г. <Г., Методы расчета оптических систем, 2 изд., Л., 1969.

А. П. Грамматин.



Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.

Источник: ОБЪЕКТИВ

Объектив

Объектив
1:2,8/50 Macro — 1:4-5.6/70-300 — 1:4-5.6/10-20

Объекти́в — оптическое устройство, предназначенное для создания действительного оптического изображения. В оптике рассматривается как равнозначное собирающей линзе, хотя может иметь иной вид, например см. «Камера-обскура». Обычно объектив состоит из набора линз (в некоторых объективах — из зеркал), рассчитанных для взаимной компенсации аберраций и собранных в единую систему внутри оправы.

Содержание

  • Объективы применяются в фотоаппаратах, кинокамерах и видеокамерах, фотоувеличителях, микроскопах, телескопах, различных наблюдательных и измерительных приборах (см. «Геодезия»).
  • В наблюдательных оптических приборах (дальномер, бинокль, микроскоп) объективом называется (порой весьма условно) первый компонент прибора, создающий изображение, рассматриваемое через окуляр. В этом случае объектив может представлять собой и рассеивающую линзу (так построены видоискатели многих дальномерных и шкальных фотоаппаратов), а образуемое им изображение может быть мнимым.
  • В зависимости от назначения и устройства, в конструкцию объектива могут входить вспомогательные элементы: диафрагма, для управления количеством проходящего света, система фокусировки, фотографический затвор, внутренние и встроенные бленды.

Характеристики объективов

Основные

  • Фокусное расстояние (и возможность его изменения);
  • Угол поля зрения объектива;
  • Светосила;
  • Максимальное относительное отверстие (иногда неправильно называемое светосилой);
  • Уровень и характер оптических искажений (аберраций);
  • Разрешающая способность;
  • Тип байонета или диаметр резьбы для крепления к камере — для сменных фотографических или киносъемочных объективов.

Дополнительные и уточняющие

  • Рабочий отрезок или рабочее расстояние — для сменных объективов. Расстояние между опорной плоскостью присоединительной оправы и фокальной плоскостью объектива. В большинстве случаев определяется типом байонета, имеет важное значение для резьбовых типов крепления (так. объективы с присоединительной резьбой М39×1 выпускались и под рабочий отрезок 28.8 мм для дальномерных камер «Leica», «ФЭД», «Зоркий», и под рабочий отрезок 45.2 мм для зеркальных камер «Зенит»).
  • Минимальное относительное отверстие (максимальное число диафрагмы, например 16 или 22) — определяется конструктивными особенностями диафрагмы.
  • Минимальная дистанция фокусировки (МДФ), или максимальный масштаб макросъёмки для макрообъективов (например, 55 мм, 1:1) — определяется фокусным расстоянием и конструкцией оправы[источник не указан 905 дней].
  • Диаметр и шаг резьбы для присоединения светофильтров.
  • Графики MTF (Модуляционная передаточная функция — уточняет разрешающую способность).
  • Число линз и групп линз. Большее количество линз позволяет конструкторам рассчитать объектив с лучше исправленными аберрациями, однако уменьшает светопропускание и повышает риск паразитных переотражений, снижающих контраст изображения. Кроме того, большее число поверхностей, которые надо полировать, увеличивает себестоимость производства и ужесточает требования к точности изготовления каждой детали. Именно поэтому до сих пор с успехом применяются и будут применяться такие простые оптические схемы, как Тессар.
  • Наличие асферических линз.
  • Вид просветления.
  • Конструкция и особенности оправы и байонета. Например, «Помповая» оправа (от сходства с помповым ружьём)— изменение фокусного расстояния и наводка на резкость осуществляется одним кольцом, осевое перемещение которого меняет фокусное расстояние, а поворотом осуществляется наводка на резкость. Более традиционным является наличие двух различных органов управления.

Классификация фотографических объективов

Изображение, полученное объективом «рыбий глаз»

Штатный объектив

  • Штатный объектив (жарг. Ки́товый объектив, от англ. kit — комплект) — объектив, которым комплектуется фотокамера при продаже. С зеркальными камерами нижнего ценового диапазона в комплекте идут недорогие объективы с переменным фокусным расстоянием (Canon EF-S 18-55, AF-S DX 18-55мм VR)[источник не указан 102 дня]

Также «штатным» называют объектив, фокусное расстояние которого равно диагонали кадра. Например, для малоформатной камеры штатным будет объектив с фокусным расстоянием 43 мм.

Типы объективов по конструкции (оптической схеме)

Создание объективов, свободных от искажений, длительное время было скорее искусством, чем наукой. Особенно удачные схемы расположения линз остались в истории техники под собственными именами:

  • Монокль — простейший объектив, состоящий из одной собирающей линзы.
  • Перископ — симметричный объектив, состоящий из двух собирательных линз.
  • Триплет — простейший вариант анастигмата, состоящий из трёх не склеенных линз, двух собирающих и одной рассеивающей между ними.
  • Ретрофокусный объектив — класс объективов, отличающихся тем, что расстояние от задней оптической поверхности до фокальной плоскости больше фокусного расстояния, что позволяет спроектировать короткофокусный объектив с удлиненным задним отрезком. Получил популярность в связи с распространением однообъективных зеркальных камер.
  • Телеобъектив — класс объективов (как правило, длиннофокусных), у которых расстояние от передней оптической поверхности до задней фокальной плоскости меньше фокусного расстояния.
Так выглядит зеркально-линзовый длиннофокусный объектив
  • Зеркально-линзовый объектив — класс объективов, которые кроме линз содержат зеркала. Как правило, по такой схеме делают длиннофокусные объективы для уменьшения их габаритных размеров. Заявлен зеркально-линзовый объектив с многократным отражением света «Origami» для сверхкомпактного оборудования[1].
  • Зеркальный объектив содержит в конструкции только зеркала. Зеркала не обладают дисперсией, поэтому такие оптические схемы встречаются во многих технических сферах, например, в нанолитографии[2].

По виду применяемой оптической (аберрационной) коррекции

  • Ахромат — объектив с минимальной хроматической аберрацией.
  • Апланат — симметричный объектив, состоящий из двух ахроматических линз.
  • Анастигмат — объектив, у которого значительно уменьшен астигматизм и все остальные аберрации. Практически все современные фотографические, киносъемочные и телевизионные объективы — анастигматы.
  • Апохромат — анастигмат, у которого лучше устранена хроматическая аберрация.
  • Планахромат —
  • Планапохромат —
  • Стигмахроматы —
  • Микрофлюары —

По диапазону значений фокусного расстояния

  • Фикс — любой объектив с фиксированным фокусным расстоянием, жаргонное слово, сокращение, используемое для противопоставления вариообъективам. В кинематографическом обиходе такие объективы называются дискретными.
  • Вариообъектив — объектив с переменным фокусным расстоянием (трансфокатор, «зум»).

По углу поля зрения (фокусному расстоянию)

Принцип действия простейшего зум-объектива

Широко применяется классификация фотографических объективов по углу поля зрения или по фокусному расстоянию, отнесённому к размерам кадра. Эта характеристика во многом определяет сферу применения объектива:

  • Нормальный объектив — объектив, у которого фокусное расстояние примерно равно диагонали кадра. Для 35-мм плёнки нормальным считается объектив с фокусным расстоянием 50 мм, хотя диагональ такого кадра равна 43 мм. Угол поля зрения нормального объектива от 40° до 51° включительно (часто около 45°). Считается, что восприятие перспективы снимка, сделанного нормальным объективом, наиболее близко к нормальному восприятию перспективы окружающего мира человеком.[3][4]
  • Широкоугольный объектив (син. короткофокусный объектив) — объектив, с углом поля зрения от 52° до 82° включительно, фокусное расстояние которого меньше широкой стороны кадра. Часто используется для съёмки в ограниченном пространстве, например интерьеров.
  • Сверхширокоугольный объектив — объектив, у которого угол поля зрения 83° и более, а фокусное расстояние меньше малой стороны кадра. Сверхширокоугольные объективы обладают преувеличенной передачей перспективы и часто используются для придания изображению дополнительной выразительности.
  • Портретный объектив — если данный термин применяется к диапазону фокусных расстояний, то обычно подразумевается диапазон от диагонали кадра до трёхкратного её значения. Для 35-мм плёнки портретным считается объектив с фокусным расстоянием 50—130 мм и углом поля зрения 18—45°. Понятие портретного объектива условно и относится кроме фокусного расстояния к светосиле и характеру оптического рисунка в целом.
  • Длиннофокусный объектив (часто и некорректно именуемый телеобъективом) — объектив, у которого фокусное расстояние значительно превышает диагональ кадра. Имеет угол поля зрения от 10° до 39° включительно, и предназначен для съёмки удаленных предметов.
  • Сверхдлиннофокусный объектив — объектив, угол поля зрения которого 9° и менее.
  • В настоящее время массовое применение получил современный тип объективов с переменным фокусным расстоянием, называемый вариообъектив (трансфокатор, «зум» (англ. Zoom)).
Схематическое обозначение фокусного расстояния и их угол поля зрения: 1.Сверхширокоугольный объектив . 2. Широкоугольный объектив. 3. Нормальный объектив . 4. Телеобъектив. 5. Супер-телеобъектив

По назначению (съёмочные объективы)

Существенное значение имеет назначение объектива. Перед тем как приступить к съёмке, всегда возникает вопрос о том, что будем снимать.

  • Портретный объектив — используется для съёмки портретов. Должен давать мягкое изображение без геометрических искажений. В качестве портретных часто используются телеобъективы или объективы с фиксированным фокусным расстоянием в диапазоне 80—200 мм (для 35 мм плёнки). Классическими являются 85 мм и 130 мм. Специализированный портретный объектив спроектирован так, что минимальные аберрации показывает при фокусировке с нескольких метров то есть именно при съёмке портрета, в ущерб качеству изображения «на бесконечности». Практически обязательным для портретного объектива является большое (лучше, чем 2.8) относительное отверстие, и очень важен характер бокэ;
  • Макрообъектив — объектив, специально корригированный для съёмки с конечных коротких расстояний. Как правило, применяется для макросъёмки небольших объектов крупным планом, вплоть до масштаба 1:1. Позволяют производить съёмку с повышенным контрастом и резкостью. Обладают меньшей светосилой, чем аналогичные по фокусному расстоянию объективы другого типа. Типичное фокусное расстояние от 50 до 100 мм. Кроме того, обычно имеет специальную оправу.[5];
  • Длиннофокусный объектив — как правило, используется для съёмки удалённых объектов. Длиннофокусный объектив, в котором расстояние от передней оптической поверхности до задней фокальной плоскости меньше фокусного расстояния, именуется телеобъектив;
  • Репродукционный объектив — используется при пересъёмке чертежей, технической документации и т. д. Должен обладать минимальными геометрическими искажениями, минимальным виньетированием и минимальной кривизной поля изображения;
  • Шифт-объектив (объектив со сдвигом, от англ. shift) — используется для архитектурной и иной технической съёмки и позволяет предотвратить искажение перспективы.
  • Тилт-объектив (объектив с наклоном, от англ. tilt) — используется для получения резкого изображения неперпендикулярных оптической оси объектива протяжённых объектов при макросъёмке, а также для получения художественных эффектов.[6].
  • Тилт-шифт объектив — класс объективов, сочетающий в себе сдвиг и наклон оптической оси. Позволяет использовать возможности карданных камер в малоформатной фотографии. Крупнейшие производители фототехники имеют в линейке оптики хотя бы один такой объектив, например Canon TS-E 17 F4L.
  • Стеноп (пинхол) (объектив камеры-обскуры, маленькая дырочка, от англ. pinhole) — используется для съёмок пейзажей или иных объектов с очень большими выдержками и с получением в одном кадре одинаково резкого изображения от макро расстояний до бесконечности;
  • Софт-объектив (мягкорисующий объектив, от англ. soft) — объектив с недоисправленными аберрациями, обычно сферической, или с вносящими искажения элементами конструкции. Служит для получения эффекта размытости, дымки и т. п. при сохранении резкости.[7] Применяются в портретной съёмке. Немногим близкий эффект дают так называемые «фильтры мягкого фокуса»[8];
  • Суперзум (тревел-зум) (англ. travel zoom) — универсальный вариообъектив относительно малого веса и максимального диапазона фокусных расстояний. Используется при пониженных требованиях к качеству снимка и повышенных — к оперативности использования и массе.
  • Ультразум — суперзум, который отличается повышенными кратностью диапазона фокусных расстояний, обычно начиная с пяти.
  • Гиперзум — суперзум, кратность диапазона фокусных расстояний которого обычно больше 15. Распространены в профессиональных видеокамерах и компактных фотоаппаратах, например, Fujinon A18x7.6BERM[9], Angenieux 60x9,5[10], Nikon Coolpix P500 (кратность 36), Sony Cyber-shot DSC-HX100V (кратность 30), Canon PowerShot SX30 IS (кратность 35), Nikon Coolpix P90 (кратность 24). Качество изображения объектива, необходимое в видеокамерах, особенно стандартной четкости, позволяет строить объективы с большой кратностью. Кроме того, при малой диагонали матриц видеокамер и компактных фотоаппаратов, габариты вариообъектива с большим диапазоном фокусных расстояний несравнимо меньше, чем были бы при таких же параметрах для формата APS-C. Студийные видеокамеры могут оснащаться вариообъективами с кратностью, равной 50 и даже 100[11].

По назначению (прочие объективы)

  • Проекционный объектив — используется в проекторах. В отличие от съёмочных объективов, устойчив к значительному нагреву в интенсивном световом потоке. Обладает более простой конструкцией оправы и не оснащен механизмом диафрагмы.
  • Объектив микроскопа или микрообъектив —
  • Объектив телескопа

Производство объективов

Производство объективов — высокотехнологичная область, оно требует значительных исследований, сложной аппаратуры для обработки стекла, комплекса научно-технических исследований в области расчёта формы линз, нанесения просветляющих покрытий и др.

Распространённые марки объективов

Многие объективы имеют собственные имена, присвоенные им фирмой — разработчиком.

  • Волна
  • Гелиос
  • Зенитар
  • Зоннар
  • Индустар
  • Калейнар
  • Мир
  • МТО
  • Ноктилюкс
  • Ортагоз
  • Пеленг
  • Руссар
  • Таир
  • Тессар
  • Эльмарит
  • Эра
  • Юпитер
  • Angenieux
  • Canon
  • Carl Zeiss (один из старейших легендарных производителей высококачественной оптики)
  • Fujinon
  • Leica (легендарный производитель оптики)
  • Minolta (производитель оптики с байонетом Minolta AF/Minolta MD/MC/SR и др. Фотоподразделение впоследствии поглощено первоначально Konica Minolta, а затем Sony).
  • Nikkor (торговая марка Nikon Corporation)
  • Pentax
  • Sigma (производитель сменной оптики под различные системы)
  • Sony (производитель сменной оптики с байонетом α-mount. Байонет α-mount является полностью совместимым с байонетом Minolta AF)
  • Schneider Kreuznach
  • Takumar
  • Tamron (производитель сменной оптики под различные системы)
  • Tokina (производитель сменной оптики под различные системы)
  • Voigtländer
  • Zeiss Planar
  • Zuiko Digital (торговая марка Olympus)

Дополнительные изображения

См. также

  • Линза
  • Кит-объектив
  • Относительное отверстие
  • Аберрации объектива
  • Фокусное расстояние
  • Угол изображения объектива
  • Угол поля зрения объектива
  • Бленда
  • Оптические системы
  • Шифт-объектив
  • Обозначения объективов

Примечания

Классификация объективов по фокусному расстоянию.

Ссылки

Литература

  • Волосов Д. С. Фотографическая оптика. М., «Искусство», 1971.
  • Русинов М. М. Композиция оптических систем. Л., «Машиностроение», 1989.
  • ГОСТ 25205-82 Фотоаппараты и съёмочные фотографические объективы. Термины и определения. М. Изд-во стандартов, 1982.(действующий)

Источник: Объектив

Объектив

        обращенная к объекту часть оптической системы или самостоятельная оптическая система, формирующая действительное Изображение оптическое объекта. Это изображение либо рассматривают визуально в Окуляр, либо получают на плоской (реже искривленной) поверхности (фотографического свето-чувствительного слоя, фотокатода передающей телевизионной трубки или электроннооптического преобразователя (См. Электроннооптический преобразователь), матового стекла или экрана). Конструктивно О. могут быть разделены на три класса: наиболее распространённые линзовые (рефракторы, диоптрические); зеркальные (рефлекторы, катоптрические); зеркально-линзовые (катадиоптрические; подробно о них см. в ст. Зеркально-линзовые системы). По назначению О. делятся: на О. зрительных труб (См. Зрительная труба) и телескопов, которые дают уменьшенное изображение; О. Микроскопов —увеличенное изображение; фотографические и проекционные О., дающие в зависимости от конструкции и способа применения уменьшенное или увеличенное изображение.
         Важнейшими оптическими характеристиками О. являются: фокусное расстояние (см. Кардинальные точки оптической системы, Фокус в оптике), которое при заданном удалении объекта от О. определяет Увеличение оптическое О.; диаметр входного зрачка О. (см. Диафрагма в оптике); относительное отверстие и выражающаяся через него Светосила О.; Поле зрения О. Качество формируемого О. изображения характеризуют: Разрешающая способность О., коэффициент передачи контраста, коэффициенты интегрального и спектрального пропускания (См. Пропускания коэффициент) света, коэффициент светорассеяния в О., падение освещённости по полю изображения.
         Объективы зрительных труб и телескопов. Расстояние до объектов, изображаемых такими О., предполагается очень (практически бесконечно) большим. Поэтому объекты характеризуют не линейными, а угловыми размерами. Соответственно, характеристиками О. данной группы служат угловое увеличение γ, угловая разрешающая способность a и угол поля зрения 2ω = 2ω'/γ, где 2ω' — угол поля зрения следующей за О. части оптической системы (обычно окуляра). В свою очередь, γ = f1/f2, где f1 — фокусное расстояние О., f2 — переднее фокусное расстояние последующей части системы. Разрешающая способность О. в угловых секундах определяется по формуле a’’ = 120’’/D, где D — выраженный в мм диаметр входного зрачка О. (чаще всего им является оправа О.). Освещённость изображения (светосила О.) пропорциональна квадрату относительного отверстия (D/f1)2.
         О. измерительных и наблюдательных зрительных труб и геодезических приборов имеют входные зрачки диаметром несколько см. Малость поля зрения (не более 10—15°, обычно меньше) большинства зрительных труб позволяет использовать О. сравнительно простых конструкций: линзовые О. состоят, как правило, из двух склеенных линз и исправлены лишь в отношении сферической аберрации (См. Сферическая аберрация) и хроматической аберрации (См. Хроматическая аберрация). Менее употребительны О. из трёх и более линз, в которых исправлены также Кома и некоторые др. Аберрации оптических систем. К 70-м гг. 20 в. в геодезических приборах начали использоваться Менисковые системы Максутова. Относительные отверстия О. наблюдательных труб и геодезических приборов варьируют в широких пределах (примерно от 1 : 20 до 1 : 5).
         Диаметры линзовых и зеркально-линзовых О. телескопов Объектив 0,5—1 м (максимальное D = 1,4 м). В Рефракторах используются двухлинзовые О. (также с исправлением лишь сферических и хроматических аберраций). В Астрографах, предназначенных для фотографирования звёздного неба,— трёх- и четырёхлинзовые О.; в них, как правило, исправляются все аберрации, за исключением кривизны поля (См. Кривизна поля). Угол поля зрения О. астрографов достигает 6°; у двухлинзовых О. рефракторов он обычно тем меньше, чем больше их диаметр, составляя у самых больших менее 1°. Относительные отверстия больших рефракторов Объектив 1 : 20 — 1 : 10, у астрографов они больше, доходя до 1 : 1,4 — 1 : 1,2. В Шмидта телескопах и менисковых системах Максутова поле зрения достигает 5° при относительном отверстии около 1: 3. Наибольший О. зеркального телескопа имеет D = 5 м (Рефлектор с параболическим зеркалом в обсерватории им. Хейла на г. Маунт-Паломар, США); в СССР строится рефлектор с параболическим зеркалом диаметром около 6 м. Поле зрения таких О. не превышает нескольких угловых минут; у О. телескопов, построенных по схеме Ричи — Кретьена системы рефлектора (См. Ричи-Кретьена система рефлектора) с гиперболическим главным зеркалом, — до 1°. Аберрации подобных О. (кроме хроматических и сферических) значительны и исправляются введением дополнительных (коррекционных) линз и зеркал, т. н. компенсаторов. О. современных крупных рефлекторов позволяют осуществлять смену вспомогательных зеркал, обеспечивая возможность работы при относительных отверстиях около 1:4, 1:10, 1: 30.
         К астрономическим О. относятся также О., применяемые в системах наблюдения за искусственными спутниками Земли (См. Искусственные Спутники Земли) (т. н. спутниковых камерах) и для фотографирования тел, движущихся в верхних слоях атмосферы (например, метеоров). По своим характеристикам они близки, с одной стороны, к О. астрографов, с др. стороны — к некоторым типам фотографических О. В них исправляются все аберрации, за исключением кривизны поля, угол поля зрения может достигать 30°, относительного отверстия обычно велики (до 1 : 1,2). Типичным примером может служить О. «Астродар» спутниковой камеры, построенной по системе Максутова, отличающийся тем, что все его преломляющие и отражающие поверхности сферичны и при этом концентричны. Эффективный диаметр этого О. — 50 см, f 70 см (следовательно, относительное отверстие 1: 1,4); поле зрения составляет 5° × 30°.
         Фотографические объективы (к ним относятся и О., применяемые при киносъёмке и репродуцировании) отличаются от О. предыдущей группы тем, что изображения, даваемые ими, должны быть резкими до края фотоплёнки (или иного приёмника), размеры которой могут быть сравнительно велики. Поэтому угол поля зрения резкого изображения у таких О. значительно больше, чем у О. зрительных труб, — свыше 50°. Чтобы добиться резкости и высокого контраста неискажённого плоского изображения при больших углах поля зрения, необходимо тщательно исправлять все основные аберрации (сферическую, хроматическую, кому, Астигматизм, дисторсию (См. Дисторсия), кривизну поля), а в ряде случаев — и наиболее существенные аберрации высшего порядка. Это приводит к значительному усложнению конструкции, тем большему, чем больше относительное отверстие и угол поля зрения [число линз и зеркал увеличивается и (или) их форма усложняется]. На рис. 1 изображено несколько схем наиболее известных линзовых фотообъективов. О., построенные по одной оптической схеме, могут иметь различные оптические характеристики (фокусное расстояние, относительное отверстие, угол поля зрения) и применяться для различных целей.
         По назначению фотографические О. разделяют на О., применяемые в любительской и профессиональной фотографии и кинематографии, репродукционные, телевизионные, аэрофотосъёмочные, флюорографические, астрографические и др., а также О. для невидимых областей спектра — инфракрасной и ультрафиолетовой. Среди О. одного и того же назначения различают нормальные, или универсальные, светосильные, широкоугольные и длиннофокусные, или Телеобъективы. Наиболее широко используются нормальные (универсальные) О. Это, как правило, Анастигматы, обеспечивающие резкое плоское изображение при умеренно большом относительном отверстии и поле зрения. Их фокусные расстояния Объектив 40—150 мм, относительные отверстия — 1 : 1,8 — 1 : 4, угол поля зрения в среднем около 50°. Светосильные О. с относительными отверстиями от 1 : 1,8 до 1 : 0,9 (в некоторых конструкциях, в частности в зеркально-линзовых,— до 1 : 0,8) используют для фотографирования в условиях пониженной освещённости; их поле зрения обычно меньше, чем у универсальных. Широкоугольные О. обладают углом поля зрения, превышающим 60° и доходящим у некоторых из них до 180° (например, показанный на рис. 1 объектив Гилля имеет поле зрения 180° при относительном отверстии 1 : 22). Особенно важную роль такие О. играют в аэрофотосъёмке (См. Аэрофотосъёмка). Фокусные расстояния широкоугольных О. обычно в пределах от 100 до 500 мм; их относительного отверстия характеризуются средними и малыми значениями (1 : 5,6 и ниже). В них трудно исправлять такие аберрации, как дисторсия, кривизна поля и астигматизм. О. с исправленной дисторсией называется ортоскопическими. У О. с углом поля зрения, приближающимся к 180° (от около 120° до 180°), дисторсию не исправляют (она отчасти может быть исправлена при печатании снимков спец. О.). Для формируемых этими (т. н. дисторсирующими) О. изображений характерны значительные перспективные искажения. Такие О. применяются, например, для создания особых композиций при фотосъёмке архитектурных ансамблей и ландшафтов. Чем больше поле зрения, тем более резко к его краю падает освещённость изображения (пропорционально косинусу четвёртой степени от половины угла поля зрения). В О. для любительской и профессиональной фотографии неравномерность освещённости корригируется при расчёте аберраций О.; у др. типов фотообъективов освещённость выравнивается с помощью специальных фильтров.
         К длиннофокусным относятся О., фокусное расстояние которых превышает трёхкратную величину линейного поля зрения (для большей части фотографических О. это 100—2000 мм). Длиннофокусные О. применяются для съёмки удалённых объектов в крупном масштабе; их поле зрения обычно менее 30°, а относительное отверстие не превышает 1 : 4,5 — 1 : 5,6.
         Одинаково хорошее исправление всех аберраций фотографических О. представляет собой чрезвычайно трудную задачу, особенно у светосильных, широкоугольных и специальных О. Поэтому находят компромиссные решения, меняя требования к исправлению аберраций в зависимости от назначения О.: например, в светосильных фотографических О. менее тщательно исправляют т. н. полевые аберрации, но при этом уменьшают поле зрения; в случае О. с большими фокусными расстояниями принимают особые меры для исправления хроматических аберраций и т.д.
         Выбор освещённости в плоскости изображения фотообъектива зависит от яркости объекта, чувствительности фотоматериала или иного приёмника света и требуемой глубины изображаемого пространства (См. Глубина изображаемого пространства) (глубины резкости). Изменение освещённости осуществляется путём изменения относительного отверстия О. с помощью диафрагмы переменного диаметра, например ирисовой диафрагмы (См. Ирисовая диафрагма). На оправе О. имеется шкала, по которой устанавливают нужное относительное отверстие (характеризуя О., обычно указывают максимальное значение этого отверстия). Освещённость плоскости изображения пропорциональна квадрату отношения диаметра входного зрачка О. к его фокусному расстоянию — т. н. геометрической светосиле О. Умножение этой величины на коэффициент, определяемый потерями световой энергии при прохождении через О. (на поглощение в толще стекла и отражение от оптических поверхностей), даёт физическую светосилу О. Для увеличения физической светосилы (т. е. для уменьшения потерь света) современные фотографические О. просветляют (см. Просветление оптики). Подбор специальных просветляющих — однослойных и многослойных — покрытий позволяет не только повысить интегральное пропускание О., но и сбалансировать спектральное пропускание в соответствии со спектральной чувствительностью трёх слоев цветной обратимой плёнки. Это обеспечивает правильное воспроизведение цветов объектов, изображаемых на таких плёнках.
         Широко применяются т. н. панкратические О. с переменным фокусным расстоянием (таковы многие киносъёмочные объективы); изменение этого расстояния осуществляется перемещением отдельных компонентов О., при котором его относительное отверстие обычно остаётся неизменным. Подобные О., в частности, позволяют менять масштаб изображения без изменения положения объекта и плоскости изображения (при смещении компонент О. и изменении его фокусного расстояния меняется положение главных плоскостей О.; см. Кардинальные точки оптической системы). По своим оптико-коррекционным свойствам О. с переменным фокусным расстоянием делятся на две группы: 1) вариообъективы, оптическая схема которых корригируется в отношении всех аберраций как единое целое; 2) Трансфокаторы — системы, состоящие из собственно О. и устанавливаемой перед ним афокальной насадки, аберрации которой исправляются отдельно. Получение изображений высокого качества в панкратическом О. достигается за счёт увеличения числа линз и компонент. Такие О. — сложные системы, состоящие из 11—20 линз.
         Проекционные О. однотипны с фотографическими, отличаясь от них в принципе лишь обратным направлением лучей света. По типу проекции они делятся на О. для диапроекции в проходящем свете и О. для эпипроекции в отражённом свете (см. Кинопроекционный объектив, Проекционный аппарат). Особую подгруппу, также относимую к фотообъективам, составляют репродукционные О., применяемые для получения изображений плоских предметов, чертежей, карт и т.п.
         Проекционные О., репродукционные О. и фотообъективы, используемые на малых удалениях от объекта, характеризуют не угловым, а линейным увеличением (масштабом изображения в собственном смысле), линейными размерами поля зрения и числовой апертурой (См. Апертура). В этом отношении они сходны с О. микроскопов.
         Объективы микроскопов отличает расположение в непосредственной близости от объекта. Их фокусные расстояния невелики — от 30—40 мм до 2 мм. К основным оптическим характеристикам О. микроскопов относятся: числовая апертура А, равная n1sin u1, где n1 — Преломления показатель среды, в которой находится объект, u1 — половина угла раствора светового пучка, попадающего в О. из точки объекта, лежащей на оптической оси О.; линейное увеличение b; линейные размеры 2l поля зрения, резко изображаемого О.; расстояние от плоскости объекта до плоскости изображения. Величина А определяет как освещённость изображения, прямо пропорциональную А2, так и линейный предел разрешения микроскопа, т. е. наименьшее различаемое расстояние на объекте, равное для самосветящихся объектов (в предположении, что аберрации отсутствуют) ε = 0,51 γ/A, где γ — длина волны света. Если объект находится в воздухе (n = 1, «сухой» О.), то А не может превышать 1 (фактически не более 0,9). Помещая объект в сильно преломляющую (n > 1) жидкость, т. н. иммерсию, примыкающую к поверхности первой линзы О., добиваются того, что А достигает 1,4—1,6 (см. Иммерсионная система). β современных микроскопов доходит до 90—100 ×; полное увеличение микроскопа Г = βГ', где Г' — угловое увеличение окуляра. Линейное поле 2l связано с диаметром D диафрагмы поля зрения окуляра соотношением 2l = D/β. По мере увеличения А и β растет сложность конструкции О., поскольку требования к качеству изображения очень велики — разрешающая способность О. практически не должна отличаться от приведённой выше для идеального (безаберрационного) О. Этому условию удовлетворяют конструкции наиболее совершенных О. микроскопов —т. н. планахроматов и планапохроматов. На рис. 2 приведена схема одного из лучших планапохроматов советского производства. (Более подробно см. статьи Зеркально-линзовые системы; Микроскоп, разделы: Оптическая схема, принцип действия, увеличение и разрешающая способность микроскопа и Основные узлы микроскопа.)
         Особые группы О. составляют: О. спектральных приборов (См. Спектральные приборы), по свойствам во многом близкие к фотографическим О.; специальные О., предназначенные для использования с Лазерами и т.д.
         Лит.: Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1—2, М. — Л., 1948—52; Слюсарев Г. Г., Методы расчета оптических систем, 2 изд., Л., 1969; Flügge J., Das photographische Objektiv, W., 1955; Русинов М. М., Фотограмметрическая оптика, М., 1962; Микроскопы, под ред. Н. И. Полякова, М., 1969; Михель К., Основы теории микроскопа, пер. с нем., М., 1955.
        
        Рис. 1. Линзовые фотографические объективы.
        
        Рис. 2. Типичная оптическая схема объектива микроскопа.

Источник: Объектив

Объектив

(предметное стекло) — то стекло зрительной трубы или микроскопа, которое обращают к предмету, при рассматривании его названными оптическими приборами; также — совокупность оптических стекол фотографической камеры. О. имеют различное устройство, смотря по тому, для какого из названных приборов они назначаются. См. Оптические стекла.

Источник: Объектив